您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 概率论与数理统计习题集答案
2.9二维随机变量的联合分布2.10二维随机变量的边缘分布(一)1.解:XY13()XiPx001/81/813/803/823/803/8301/81/8()YjPy3/41/412.解:XY01201/91/91/361/411/91/91/81/221/91/91/361/4()YjPy4/94/91/913.解:(1)由联合概率密度的性质得:(1)001xyCxedxdyC故:C=1(2)讨论:当(1)X00f()(,)xyxxxfxydyxedye时,0fxxX时,()=0+(1)201y0f(y)=(1)xyxedxyY时,0fyyY时,()=0所以,2Y1,0,0(1)f()f()0,00xXyexyxyx,y0()XiPx424.1dxdy201解:(1)由k(6-x-y)解得:k=8323=8dxdy101(2)P(X1,Y3)(6-x-y)84227=32dxdy1.501(3)P(X1.5)(6-x-y)8422=3xdxdy201(4)P(X+Y4)(6-x-y)82.10二维随机变量的边缘分布(二)2.11随机变量的独立性1.解:(1)(51)0.28,(52)0.28,(53)0.22.(54)0.09,(55)0.13,XXXXXPPPPP(2)(51)0.18,(52)0.15,(53)0.35,(54)0.12,(55)0.2,YYYYYPPPPP112.(1)24ab解:(2))(),aabXY11111由:P(3,1)=P(3)P(1)可得:(8242482413解得:1283.解:(1)3344,014,01()()0,0,XYxxxyxfxfy其它其它(,)f()()XYfxyxfy明显:所以X,Y不独立.(2)22221,111,11()()0,0,XYxxyyfxfy其它其它(,)f()()XYfxyxfy明显:所以X,Y不独立.2.12二维随机变量函数的分布11.Z解:(1)的可能值为:-2,0,1,3,4。对应的概率为:11111(2)(0)(1)(3)(4)ZZZZZPPPPP11931-=,=,=,=,=410202020(2)212Z的可能值为:-,-,1,2,4对应的概率为:22222(2)(1)(1)(2)(4)ZZZZZPPPPP91131-=,-=,=,=,=201042020(3)13Z的可能值为:-,1,2对应的概率为:333(1)(1)(2)ZZZPPP1113-=,=,=410202.解:(1)由于1,01,0()()0,0,0yXYxeyfxfyy其它(,)()(),XYfxyfxfyXY故:相互独立。(2)由于X,Y相互独立,用分布函数法,22(,)()()ZXYxyzxyzFzfxydxdyfxfydxdy(z)=P(Z)=讨论:(1)当z≤0时,()0zZ明显有F(2)当0z≤2时,22001()(1)2zzxyzzdxedyzeZF(3)当z2时,122001()1()2zxyzzzdxedyeeZF20,01()(1),02211(),22zzzzzzezeezZF上式对z求导,得'20,01()()(1),0221(),22zZZzzzfzFzezeez13(3)(3)1(3)1(3)1()2ZPZPZFzz第二章习题课(二)11131311,,,,,,,()24124844231.(1)自左向右,自上向下依次1212;,399()15(3);(4)472.ABAC,0,03.f()()0,00,0xyXYexyeyxfyxy解:(,)f()()XYfxyxfy明显:所以X,Y不独立.221,012ln,114.f()(),120,10,XYyxxxfyyxyx解:其它(,)f()()XYfxyxfy明显:所以X,Y不独立.
本文标题:概率论与数理统计习题集答案
链接地址:https://www.777doc.com/doc-2362492 .html