您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 机械振动和机械波教案
机械振动教学目标:1.掌握简谐运动的动力学特征和描述简谐运动的物理量;掌握两种典型的简谐运动模型——弹簧振子和单摆。掌握单摆的周期公式;了解受迫振动、共振及常见的应用2.理解简谐运动图象的物理意义并会利用简谐运动图象求振动的振幅、周期及任意时刻的位移。3.会利用振动图象确定振动质点任意时刻的速度、加速度、位移及回复力的方向。教学重点:简谐运动的特点和规律教学难点:谐运动的动力学特征、振动图象教学方法:讲练结合,计算机辅助教学教学过程:一、简谐运动的基本概念1.定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。表达式为:F=-kx(1)简谐运动的位移必须是指偏离平衡位置的位移。也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。(2)回复力是一种效果力。是振动物体在沿振动方向上所受的合力。(3)“平衡位置”不等于“平衡状态”。平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)(4)F=-kx是判断一个振动是不是简谐运动的充分必要条件。凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。(1)由定义知:F∝x,方向相反。(2)由牛顿第二定律知:F∝a,方向相同。(3)由以上两条可知:a∝x,方向相反。(4)v和x、F、a之间的关系最复杂:当v、a同向(即v、F同向,也就是v、x反向)时v一定增大;当v、a反向(即v、F反向,也就是v、x同向)时,v一定减小。3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。因此振动物体在空间的运动有一定的范围,用振幅A来描述;在时间上则用周期T来描述完成一次全振动所须的时间。(1)振幅A是描述振动强弱的物理量。(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)(2)周期T是描述振动快慢的物理量。(频率f=1/T也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。任何简谐运动都有共同的周期公式:kmT2(其中m是振动物体的质量,k是回复力系数,即简谐运动的判定式F=-kx中的比例系数,对于弹簧振子k就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。二、典型的简谐运动1.弹簧振子(1)周期kmT2,与振幅无关,只由振子质量和弹簧的劲度决定。(2)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是kmT2。这个结论可以直接使用。(3)在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。【例1】有一弹簧振子做简谐运动,则()A.加速度最大时,速度最大B.速度最大时,位移最大C.位移最大时,回复力最大D.回复力最大时,加速度最大【例2】试证明竖直方向的弹簧振子的振动是简谐运动.【例3】如图所示,质量为m的小球放在劲度为k的轻弹簧上,使小球上下振动而又始终未脱离弹簧。(1)最大振幅A是多大?(2)在这个振幅下弹簧对小球的最大弹力Fm是多大?【例4】弹簧振子以O点为平衡位置在B、C两点之间做简谐运动.B、C相距20cm.某x时刻振子处于B点.经过0.5s,振子首次到达C点.求:(1)振动的周期和频率;(2)振子在5s内通过的路程及位移大小;(3)振子在B点的加速度大小跟它距O点4cm处P点的加速度大小的比值.【例5】一弹簧振子做简谐运动.周期为TA.若t时刻和(t+△t)时刻振子运动速度的大小相等、方向相反,则Δt一定等于T/2的整数倍D.若t时刻和(t+△t)时刻振子运动位移的大小相等、方向相同,则△t一定等于T的整数倍C.若△t=T/2,则在t时刻和(t-△t)时刻弹簧的长度一定相等D.若△t=T,则在t时刻和(t-△t)时刻振子运动的加速度一定相同2.单摆。(1)单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。(2)当单摆的摆角很小时(小于5°)时,单摆的周期glT2,与摆球质量m、振幅A都无关。其中l为摆长,表示从悬点到摆球质心的距离,要区分摆长和摆线长。(3)小球在光滑圆弧上的往复滚动,和单摆完全等同。只要摆角足够小,这个振动就是简谐运动。这时周期公式中的l应该是圆弧半径R和小球半径r的差。(4)摆钟问题。单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n与频率f成正比(n可以是分钟数,也可以是秒数、小时数……),再由频率公式可以得到:llgfn121【例6】已知单摆摆长为L,悬点正下方3L/4处有一个钉子。让摆球做小角度摆动,其周期将是多大?【例7】固定圆弧轨道弧AB所含度数小于5°,末端切线水平。两个相同的小球a、b分别从轨道的顶端和正中由静止开始下滑,比较它们到达轨道底端所用的时间和动能:ta__tb,Ea__2Eb。【例8】将一个力电传感器接到计算机上,可以测量快速变化的力。用这种方法测得的某单摆摆动过程中悬线上拉力大小随时间变化的曲线如右图所示。由此图线提供的信息做出下列判断:①t=0.2s时刻摆球正经过最低点;②t=1.1s时摆球正处于最高点;③摆球摆动过程中机械能时而增大时而减小;④摆球摆动的周期约是T=0.6s。上述判断中正确的是A.①③B.②④C.①②D.③④三、简谐运动的图象1.简谐运动的图象:以横轴表示时间t,以纵轴表示位移x,建立坐标系,画出的简谐运动的位移——时间图象都是正弦或余弦曲线.2.振动图象的含义:振动图象表示了振动物体的位移随时间变化的规律.3.图象的用途:从图象中可以知道:(1)任一个时刻质点的位移(2)振幅A.(3)周期T(4)速度方向:由图线随时间的延伸就可以直接看出(5)加速度:加速度与位移的大小成正比,而方向总与位移方向相反.只要从振动图象中认清位移(大小和方向)随时间变化的规律,加速度随时间变化的情况就迎刃而解了点评:关于振动图象的讨论(1)简谐运动的图象不是振动质点的轨迹.做简谐运动质点的轨迹是质点往复运动的那一段线段(如弹簧振子)或那一段圆弧(如下一节的单摆).这种往复运动的位移图象。就是以x轴上纵坐标的数值表示质点对平衡位置的位移。以t轴横坐标数值表示各个时刻,这样在x—t坐标系内,可以找到各个时刻对应质点位移坐标的点,即位移随时间分布的情况——振动图象.(2)简谐运动的周期性,体现在振动图象上是曲线的重复性.简谐运动是一种复杂的非匀变速运动.但运动的特点具有简单的周期性、重复性、对称性.所以用图象研究要比用方程要直观、简便.简谐运动的图象随时间的增加将逐渐延伸,过去时刻的图形将永远不变,任一时刻图线上过该点切线的斜率数值代表该时刻振子的速度大小。正负表示速度的方向,正时沿x正向,负时沿x负向.【例9】劲度系数为20N/cm的弹簧振子,它的振动图象如图所示,在图中A点对应的时刻A.振子所受的弹力大小为0.5N,方向指向x轴的负方向B.振子的速度方向指向x轴的正方向C.在0~4s内振子作了1.75次全振动D。在0~4s内振子通过的路程为0.35cm,位移为0【4例10】摆长为L的单摆做简谐振动,若从某时刻开始计时,(取作t=0),当振动至gLt23时,摆球具有负向最大速度,则单摆的振动图象是图中的()四、受迫振动与共振1.受迫振动物体在驱动力(既周期性外力)作用下的振动叫受迫振动。⑴物体做受迫振动的频率等于驱动力的频率,与物体的固有频率无关。⑵物体做受迫振动的振幅由驱动力频率和物体的固有频率共同决定:两者越接近,受迫振动的振幅越大,两者相差越大受迫振动的振幅越小。2.共振当驱动力的频率跟物体的固有频率相等时,受迫振动的振幅最大,这种现象叫共振。要求会用共振解释现象,知道什么情况下要利用共振,什么情况下要防止共振。(1)利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千……(2)防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢……【例11】把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛。不开电动机让这个筛子自由振动时,完成20次全振动用15s;在某电压下,电动偏心轮的转速是88r/min。已知增大电动偏心轮的电压可以使其转速提高,而增加筛子的总质量可以增大筛子的固有周期。为使共振筛的振幅增大,以下做法正确的是A.降低输入电压B.提高输入电压C.增加筛子质量D.减小筛子质量【例12】一物体做受迫振动,驱动力的频率小于该物体的固有频率。当驱动力的频率逐渐增大时,该物体的振幅将:()A.逐渐增大B.先逐渐减小后逐渐增大;C.逐渐减小D.先逐渐增大后逐渐减小【例13】如图所示,在一根张紧的水平绳上,悬挂有a、b、c、d、e五个单摆,让a摆略偏离平衡位置后无初速释放,在垂直纸面的平面内振动;接着其余各摆也开始振动。下列说法中正确的有:()A.各摆的振动周期与a摆相同B.各摆的振幅大小不同,c摆的振幅最大C.各摆的振动周期不同,c摆的周期最长D.各摆均做自由振动五、针对训练1.已知在单摆a完成10次全振动的时间内,单摆b完成6次全振动,两摆长之差为1.6m.则两单摆摆长la与lb分别为A.la=2.5m,lb=0.9mB.la=0.9m,lb=2.5mC.la=2.4m,lb=4.0mD.la=4.0m,lb=2.4m2.一个弹簧振子在AB间作简谐运动,O是平衡位置,以某时刻作为计时零点(t0)。经过41周期,振子具有正方向的最大加速度。那么以下几个振动图中哪一个正确地反映了振子的振动情况?()3.如图所示,一个小铁球,用长约10m的细线系牢,另一端固定在O点,小球在C处平衡,第一次把小球由C处向右侧移开约4cm,从静止释放至回到C点所用时间为1t;第二次把小球提到O点,由静止释放,到达C点所用的时间为2t,则()A.1t2tB.1t=2tC.1t2tD.无法判断4.一个单摆作简谐运动,若使摆球质量变为原来的4倍,而通过平衡位置时的速度变为原来的21,则()A.频率不变,振幅不变B.频率不变,振幅改变C.频率改变,振幅不变D.频率改变,振幅改变5.甲、乙两个单摆的振动图线如图所示。根据振动图线可以断定()A.甲、乙两单摆摆长之比是4∶9B.甲、乙两单摆振动的频率之比是2∶3C.甲摆的振动能量大于乙摆的振动能量D.乙摆的振动能量大于甲摆的振动能量6.在一圆形轨道上运行的人造同步地球卫星中放一只用摆计时的挂钟,这个钟将要()A.变慢B.变快C.停摆不走D.快慢不变7.一个单摆放在甲地,每分振动45次;放在乙地,每分振动43次。甲、乙两地重力加速度之比是__________。8.如图是M、N两个单摆的振动图线。M的振幅是__________厘米,周期是__________秒;N的振幅是__________厘米,周期是__________秒。开始振动后当N第一次通过平衡位置时,M的位移是__________厘米。如果两摆球质量之比是1∶2,在同一地点,摆长之比是__________。9.如图所示,在竖直平面内有一段光滑圆轨道MN,它所对的圆心角小于10,P点是MN的中点,也是圆弧的最低点。在NP之间的点Q和P之间搭一光滑斜面,将一小滑块(可视为质点)分别从Q点和M点由静止开始释放,设圆半径为R,则两次运动到P点所需的时间分别为__________、__________。10.如图16是某物体的共振曲线,若是悬挂在天花板上的单摆的共振曲线,则其摆长为L=__________(设g为已知)11.如图所示,一块质量为2kg、涂有碳黑的玻璃板,在拉力F的作用下竖直向上做匀变速直线运动.一个频率为5H
本文标题:机械振动和机械波教案
链接地址:https://www.777doc.com/doc-2380257 .html