您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014-2015年八年级上《第3章位置与坐标》单元测试卷含答案解析
北师大版八年级上册《第3章位置与坐标》2014-2015学年单元测试卷(陕西省榆林市靖边六中)一、选择题1.如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)2.在平面直角坐标系中,下列各点在第二象限的是()A.(2,1)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)3.点P(﹣2,3)关于y轴对称点的坐标是()A.(﹣2,3)B.(2,﹣3)C.(2,3)D.(﹣2,﹣3)4.平面直角坐标系内,点A(n,1﹣n)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限5.点P(m+3,m﹣1)在x轴上,则点P的坐标为()A.(0,﹣2)B.(2,0)C.(4,0)D.(0,﹣4)6.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)7.已知点A(2,0)、点B(﹣,0)、点C(0,1),以A,B,C三点为顶点画平行四边形.则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图是某战役中缴获敌人防御工程的坐标地图碎片,依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为(﹣3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置大约是()A.A处B.B处C.C处D.D处9.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于y轴的负半轴上,则该点的坐标为()A.(2,0)B.(0,﹣2)C.D.10.如图所示的象棋盘上,若”帅”位于点(1,﹣3)上,“相”位于点(3,﹣3)上,则”炮”位于点()A.(﹣1,1)B.(﹣l,2)C.(﹣2,0)D.(﹣2,2)二、填空题11.点A在x轴上,且与原点的距离为5,则点A的坐标是.12.如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用表示C点的位置.13.已知点M(a,b),将点M向右平移c(c>0)个单位长度,则得到C点的坐标为.14.第三象限内的点P(x,y),满足|x|=5,y2=9,则点P的坐标是.15.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为.三、解答题16.△ABC在直角坐标系内的位置如图.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标.17.等腰梯形ABCD的上底AD=2,下底BC=4,底角B=45°,建立适当的直角坐标系,求各顶点的坐标.18.已知某个图形是按下面方法连接而成的:(0,0)→(2,0);(1,0)→(0,﹣1);(1,1)→(1,﹣2);(1,0)→(2,﹣1).(1)请连接图案,它是一个什么汉字?(2)作出这个图案关于y轴的轴对称图形,并写出新图案相应各端点的坐标,你得到一个什么汉字?19.小明的生日快要到了,小军决定送给他一件小礼物,他告诉小明,他已将礼物藏在学校体育场内.具体地点忘了,只知道坐标是(6,6),还知道体育场内的两个标志点的坐标分别是A(﹣2,﹣3)和B(2,﹣3),小明怎样才能找到小军送他的礼物?20.在直角坐标系中,用线段顺次连接点(﹣2,0),(0,3),(3,3),(0,4),(﹣2,0).(1)这是一个什么图形?(2)求出它的面积;(3)求出它的周长.北师大版八年级上册《第3章位置与坐标》2014-2015学年单元测试卷(陕西省榆林市靖边六中)参考答案与试题解析一、选择题1.如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)考点:点的坐标.分析:根据点在第三象限点的坐标特点可直接解答.解答:解:∵小手的位置是在第三象限,∴小手盖住的点的横坐标小于0,纵坐标小于0,∴结合选项目这个点是(﹣4,﹣6).故选C.点评:本题主要考查了点在第三象限时点的坐标特征,比较简单.注意四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.在平面直角坐标系中,下列各点在第二象限的是()A.(2,1)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)考点:点的坐标.分析:根据点在第二象限的符号特点横坐标是负数,纵坐标是正数作答.解答:解:∵点在第二象限的符号特点是横纵坐标均为负,∴符合题意的只有选项C.故选C.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.点P(﹣2,3)关于y轴对称点的坐标是()A.(﹣2,3)B.(2,﹣3)C.(2,3)D.(﹣2,﹣3)考点:关于x轴、y轴对称的点的坐标.专题:应用题.分析:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可解答本题.解答:解:点P(m,n)关于y轴对称点的坐标P′(﹣m,n),∴点P(﹣2,3)关于y轴对称的点的坐标为(2,3).故选C.点评:本题考查平面直角坐标系点的对称性质:关于y轴对称的点,纵坐标相同,横坐标互为相反数,比较简单.4.平面直角坐标系内,点A(n,1﹣n)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.专题:压轴题.分析:本题可转化为解不等式组的问题,求出无解的不等式即可.解答:解:法1:由题意可得、、、,解这四组不等式可知无解,因而点A的横坐标是负数,纵坐标是负数,不能同时成立,即点A一定不在第三象限.法2:点A横纵坐标满足x+y=1,即点A(n,1﹣n)在直线y=1﹣x上,而y=1﹣x过一、二、四象限,故A(n,1﹣n)一定不在第三象限.故选:C.点评:本题主要考查平面直角坐标系中各象限内点的坐标的符号,把符号问题转化为解不等式组的问题.5.点P(m+3,m﹣1)在x轴上,则点P的坐标为()A.(0,﹣2)B.(2,0)C.(4,0)D.(0,﹣4)考点:点的坐标.分析:根据x轴上点的纵坐标为0列方程求出m的值,再求出横坐标即可得解.解答:解:∵点P(m+3,m﹣1)在x轴上,∴m﹣1=0,解得m=1,∴m+3=1+3=4,∴点P的坐标为(4,0).故选C.点评:本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.6.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)考点:点的坐标.分析:根据点P到两坐标轴的距离相等,可得|2﹣a|=|3a+6|,即可求出a的值,则点P的坐标可求.解答:解:∵点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=±(3a+6)解得a=﹣1或a=﹣4,即点P的坐标为(3,3)或(6,﹣6).故选D.点评:本题考查了点到两坐标轴的距离相等的特点,即点的横纵坐标的绝对值相等.7.已知点A(2,0)、点B(﹣,0)、点C(0,1),以A,B,C三点为顶点画平行四边形.则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形性质;平行四边形的性质.专题:压轴题.分析:根据题意画出草图,然后解答.以AB为一边时,CD的长等于AB=2﹣(﹣)=2,点D的坐标可以为(2,1)或(﹣2,1);以BC为对角线时,点在第四象限.坐标为(1,﹣1).解答:解:根据平行四边形的边的性质知,对边相等.可以知道另一个顶点的坐标可以为:(1,﹣1)或(2,1)或(﹣2,1).∴不在第三象限.故选C.点评:本题结合平面直角坐标系考查了平行四边形的性质,根据题意画出草图,注重数形结合是解题的关键.8.如图是某战役中缴获敌人防御工程的坐标地图碎片,依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为(﹣3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置大约是()A.A处B.B处C.C处D.D处考点:坐标确定位置.专题:数形结合.分析:根据一号暗堡和四号暗堡的横纵坐标分别确定x轴和y轴的大致位置,然后画出直角坐标系即可得到答案.解答:解:∵一号暗堡的纵坐标为2,四号暗堡的纵坐标为2,∴一号暗堡和四号暗堡的连线平行于x轴,且到x轴的距离为2,而一号暗堡的横坐标为1,四号暗堡的横坐标为﹣3,∴一号暗堡离y轴1个单位,在y轴的右侧;四号暗堡离y轴3个单位,在y轴的左侧,如图.故选B.点评:本题考查了坐标确定位置:直角坐标平面内点的位置可由点的坐标确定,点与有序实数对一一对应.9.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于y轴的负半轴上,则该点的坐标为()A.(2,0)B.(0,﹣2)C.D.考点:坐标与图形性质.分析:根据正方形的对角线等于边长的倍求出对角线的长度,再根据正方形的对角线互相平分求出顶点到原点的距离,然后根据y轴上的点的坐标特征解答即可.解答:解:∵正方形的边长是4,∴正方形的对角线是4,∵正方形的对角线互相平分,∴顶点到原点的距离为2,∴位于y轴的负半轴上的点的坐标为(0,﹣2).故选D.点评:本题考查了坐标与图形的性质,主要利用了正方形的对角线与边长的关系,正方形的对角线互相平分,以及坐标轴上的点的坐标特征.10.如图所示的象棋盘上,若”帅”位于点(1,﹣3)上,“相”位于点(3,﹣3)上,则”炮”位于点()A.(﹣1,1)B.(﹣l,2)C.(﹣2,0)D.(﹣2,2)考点:坐标确定位置.分析:先根据图分析得到“炮”与已知坐标的棋子之间的平移关系,然后直接平移已知点的坐标可得到所求的点的坐标.即可用“帅”做参照,也可用“相”做参照.若用“帅”则其平移规律为:向左平移3个单位,再向上平移2个单位到“炮”的位置.解答:解:由图可知:“炮”的位置可由“帅”的位置向左平移3个单位,再向上平移3个单位得到,所以直接把点(1,﹣3)向左平移3个单位,再向上平移3个单位得到点(﹣2,0),即为“炮”的位置.故选C.点评:本题考查了点的位置的确定,选择一个已知坐标的点,通过平移的方法求未知点的坐标是常用的方法.二、填空题11.点A在x轴上,且与原点的距离为5,则点A的坐标是(﹣5,0)或(5,0).考点:点的坐标.分析:分点A在x轴的负半轴与正半轴两种情况求解.解答:解:当点A在x轴的负半轴时,∵点A与原点的距离为5,∴点A(﹣5,0),当点A在正半轴时,∵点A与原点的距离为5,∴点A(5,0),综上所述,点A(﹣5,0)或(5,0).故答案为:(﹣5,0)或(5,0).点评:本题考查了点的坐标,要注意分点A在x轴的正半轴与负半轴两种情况求解.12.如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用(6,1)表示C点的位置.考点:坐标确定位置.专题:网格型.分析:可根据平移规律解答;也可根据已知两点的坐标建立坐标系后解答.解答:解:以原点(0,0)为基准点,则C点为(0+6,0+1),即(6,1).故答案填:(6,1).点评:本题考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.13.已知点M(a,b),将点M向右平移c(c>0)个单位长度,则得到C点的坐标为(a+c,b).考点:坐标与图形变化-平移.专题:常规题型.分析:根据向右平移,横坐标加,纵坐标不变解答即可.解答:解:∵点M向右平移c(c>0)个单位长度得到点C,∴点C的横坐标为a+c,纵坐标为b,∴点C的坐标为(a+c,b).故答案为:(a+c,b).点评:本题考查了平移与坐标与图形的变化,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.14.第三象限内的点P(x,y),满足|x|=5,y2=9,
本文标题:2014-2015年八年级上《第3章位置与坐标》单元测试卷含答案解析
链接地址:https://www.777doc.com/doc-2405607 .html