您好,欢迎访问三七文档
1数列的递推公式教案普兰店市第六中学陈娜一、教学目标1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。二、教学重点、难点和关键点重点:数列的递推定义以及应用数列的递推公式求出通项公式。难点:数列的递推公式求通项公式。关键:同本节难点。三、教学方法通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题……经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。四、教学过程环节1:新课引入一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把2现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉………一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马?通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。环节2:引例探究(1)124816………(2)11cos1coscos]1coscos[cos…….(3)01471013…….通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。递推公式定义:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可.环节3:应用举例及练习例1:已知数列{an}的第1项是1,以后的各项由公式(n≥2)给出,写出这个给出,写出这个数列的前5项.解:据题意可知:a1=1,111nnaa-=+2111112,1aa=+=+=3211311,22aa=+=+=4312511,33aa=+=+=5413811.55aa=+=+=358352321,,,,的前五项是na练习:已知一个数列的首项a1=1,a3=2,an=an-1+an-2(n≥3)求这个数列的前五项。这个例题和习题是为了让学生进一步体会通过数列的的递推公式来求数列中的项,同时也能让学生感受到如果要是中间有一个环节做错了就会关联到其他的结果也是错误的,因此要培养学生认真的品质。例2:已知数列{an}满足a1=1,an+1=an+(2n-1)(1)写出其数列的前五项,归纳出数列的一个通项公式。(2)利用数列的递推公式求其通项公式。解(1)11a211)11*2(a12a532)12*2(a23a,1055)13*2(a34a,17710)14*2(a45a猜想:an=(n-1)2+1(2)11*2a12a12*2a23a13*2a34a…………………an=an-1+(2n-3)an=a1+2[1+2+3+…+(n-1)]—(n-1)an=1+2*2)]1(1)[1nn(_(n-1),即an=(n-1)2+1当n=1时也满足上式。所设问题中的(1)是起着承上启下的作用,同时也引出了(2)的结论引起学生的兴趣,让学生感受到如何能在数列的递推公式得出数列的通项公式,体会到事物之间的互相转化的思想。4跟踪练习:已知数列{an}中,a1=1,an+1=an+)1(1nn,求数列的{an}的通项公式。在例2解题过程中从等差数列的通项公式的累和法进行引导,让学生体会到同类问题的知识的迁移过程。同时也引导学生认识到an+1—an=f(n)这样形式的都可以用累和法来求解。环节4:归纳总结①定义②累加法:an+1—an=f(n)环节5:作业:必做与选作五、板书设计
本文标题:数列的递推公式教案
链接地址:https://www.777doc.com/doc-2424679 .html