您好,欢迎访问三七文档
西南林业大学本科毕业论文(设计)开题报告论文题目高山松生化组分高光谱遥感定量反演研究专业名称地理信息系统年级2012级学生学号201204520学生姓名杨庆指导教师(职称)舒清态填表时间2016年3月22日教务处制指导教师基本情况指导教师姓名性别年龄学历或学位专业技术职务或职称工作单位西南林业大学林学院题目来源科研项目;横向课题;其它来源.1、该研究的目的、意义高山松生化组分的研究其实跟植物生化组分的研究大体是基本一致的,只是研究的面从某种意义上说缩小了范围,在这里呢我们就以植物生化组分为模型进行对高山松生化组分研究做指导。高山松植被体内所含的叶绿素、水分、蛋白质、木质素和纤维素等组分统称为生化组分,它们都直接或问接地参与生物地球化学循环,在生态系统的物质和能量循环中发挥着重要作用,是评价植物生产力、养分亏缺、枯枝落叶分解率和碳氮养分分布等的重要因子。在生态系统中人类生存和生产、生活息息相关的诸多生态过程都与植被生化组分有密切联系。例如蒸发、蒸腾、初级生产、废物分解等的快慢就与植物生化组分的含量和构成有着密切联系(PetersonandHubbard,1992;AberandFederer.1992;GoetzandPrince,1996)。对植物体而言,其生化组分,尤其是叶片中的生化组分,或作为原料(如水)、或作为触媒(如叶绿素)、或作为中间产物或最终产物(如蛋白质),影响和控制着生态过程的进行。叶绿素浓度是植物营养胁迫、光合能力和发育阶段的重要指标,在植物营养中占有极其重要的地位:氮素是植物生长不可或缺的营养元素之一,氮在叶片中参与了叶绿素和蛋白质的合成,缺氮是与叶绿素含量关系最密切的营养胁迫因子之一,而过量氮不仅造成营养物质的流失,还会污染周边地表水和地下水环境;适量的碳素营养也是植物生命过程中不可缺少的;而碳氮比含量直接影响自然界每年氮矿化量和氮循环状况(Wessman,eta1.,1988),是衡量生态系统枝落叶分解速率的重要指标,而且是许多生态模型所需的输入参数;叶水是叶片内部各种生化过程的发生介质,也是光合作用的基本原料之一,其含量多少与蒸腾作用有着密切关系。缺水不仅是限制植物生长的重要胁迫因素,在森林地区也是林火发生和快速蔓延的原因之一。可见,植物生化组分的研究不仅在生态系统、全球变化、碳、氮循环等科学研究方面具有重要意义,而且在指导农业生产、监测农作物长势和估产、分析农田水肥状况以及植被精细类和森林火灾预警等诸多方面也具有重要意义[1]。遥感作为一门新型的技术与传统学科相结合的探测手段,提供了多种不同时间和空间尺度的地表物理和化学特性的信息。与传统点尺度上耗时耗力的人工量测相比,遥感为获得不同尺度生化组分含量提供了一个便捷的多元化工具。植被生物物理、化学参量是植被属性的定量表征,对于理解生态系统、驱动地表生态模型具有重要意义。高光谱技术是近几年迅速发展起来的一种全新遥感技术。它具有窄波段,分辨率高,能获得高精度、连续的地物光谱信息,对遥感研究提供了大量高精度的数据。高光谱遥感影像丰富的光谱信息使定量估算植被生化参数成为可能。利用高光谱遥感数据实现对植被生化组分的监测,是生态学、农学、全球变化等科学研究以及精准农业等应用行业的迫切需求。传统的获取植被生化组分含量的方法主要是通过野外实地采样、室内进行分析。这种方法的主要缺点是费时费力,具有事后性和破坏性,且有限的样本采样不适合大面积的应用。遥感作为新型的探测手段,可以方便快捷的获取空间上连续分布的地物光谱信息。而且随着遥感卫星影像光谱分辨率的不断提高,现在能够获得上百个连续波段的图形,光谱分辨率可以达到10个纳米,使得每个象元都可以获取一条完整的光谱曲线,这为获取植被生化组分的光谱特征,进行生化组分的定量提取提供了可能。通过遥感估算生化组分,进而可以研究植被的质量以及区域甚至全球尺度的养分循环或生物地球化学循环等,遥感数据成为冠层特性时空变化详细信息获取的唯一低成本的来源[2]。2、国内外研究现状及发展趋势2.1高光谱遥感研究现状高光谱遥感的发展从概念的提出到成像光谱仪的问世大概有30年的历史,它是20世纪后半叶遥感技术发展的一个里程碑,早在二十世纪六七十年代美国农业部就就利用光谱学提取了植物干叶片生化组分参量,但是随着高光谱遥感技术的发展大量有关生化组分的研究也就随着展开,分布在农业,林业,生态环境等各个领域,高光谱遥感的研究也在不断的扩宽领域,我国在对林业这部分的研究也逐渐成为热点,在2010年东北林业大学的杨曦光就在植被森林生化参量的研究中其中他对全氮素和叶绿素的研究在本次论文研究中比较有借鉴意义。目前高光谱遥感的主要领域:林业遥感、环境检测、海洋遥感、资源勘察、自然灾害监测、土地资源管理、农业定量遥感的研究(生产农业精细化)、海洋生态监测等。2.2高光谱遥感在植被研究中的应用遥感提取植被生化组分的研究最初是从干叶片开始的,目前己形成从植物甚至其他的方面的研究。早在二十世纪六七十年代,美国农业部(USDA)在实验室可控条件下,使用近红外光谱学方法(NIRS)详细测定和分析了干燥和捣碎的多种植物叶片光谱,并成功提取了干叶片中纤维素、木质素、蛋白质和淀粉等生物化学参量。USDA的很快被广泛推广,并被政府采用(Card.eta1.,1988;Wessman,eta1.,1988)。Curran(1989)对干叶片的收光谱特征进行了详细测量,在详细分析引起光谱特征变化机理的基础上,发现叶片在可见光到近红外波段有42个小的吸收峰,这一研究成果为后续研究奠定了基础[1]。随着遥感定量反演技术的发展,植被生化组分研究方法逐步的走向成熟。传统的研究方法多元统计回归分析方法、植被指数法等。人们利用光谱特征采用不同波段的组和或波段位置等与植被生化组分之间建立相关关系,进而反演植被生化组分。Grossman等(1996)验证了利用逐步多元回归定量化叶片中各种生化组分含量的可靠性。而物理模型反演方法又包括辐射传输模型和几何光学模型、混合模型等方法。PabloJ.Zarco—Tejada等(2003)利用植被冠层高光谱影像及PROSPECT模型反演植被叶绿素含量。Bamt&Foudy(1998)尝试用鲜叶片反射率(透过率)光谱或其变化形式来提取单位面积上的蛋白质、木质素、纤维素、半纤维素、糖和淀粉的含量[3]。提取效果最好的是含水量和干物质含量,其他组分则表现出一定的不确定性。Whire等(2000)的研究表明:利用实验室近红外光谱(NIRS)估测的干叶和新叶的含氮量,与用野外GER2600光谱仪估计的冠层含氮量没有直接的可比性。David等(2005)利用PROSPECT叶片模型反演叶片含水量和干物质含量,表明新鲜叶片干物质反演结果较差,而干叶片中干物质反演精度较高,主要是叶片中水分影响造成的。利用鲜叶光谱估计化组分较估测干燥或捣碎叶片困难得多,主要原因有三个:一是由于新鲜叶片表面的蜡质层能引起高反射;二是叶中强势组分水的影响,使得在短波红外区水的强烈吸收会在很大程度上掩盖其它生化组分的吸收特征,因而对其他组分的估算比较困难;三是细胞结构间隙因气和水介质差异导致折射率不同而使多次散射更加复杂等。遥感反演植被生化组分的方法:最小二乘与逐步回归方法、基于光谱吸收特征的反演方法——去包络线法、光谱导数、基于光谱位置的反演方法——红边位置、植被指数、物理模型方法。高光谱遥感仪器技术起源于20世纪70年代的多光谱遥感技术,以其光谱分辨率高、图谱合一的优势迅速发展起来。3、主要参考文献[1].张艳,植被生化组分高光谱遥感定量反演研究,南京信息工程大学,博士论文.2000。[2].颜春燕,刘强,牛铮,王长,植被生化组分的遥感反演方法研究,中国科学科院遥感应用研究所遥感信息科学国家重点实验室,北京100101,2014.7月。[3].刘良云,高光谱遥感在精准农业中的应用研究[D].中国科学院遥感应用研究所,2002。[4].靳涵丞,贵州喀斯特山区烟叶生化指标高光谱估测模型研究,云南大学,2014.4月。[5].杨曦光,高光谱数据提取森林冠层叶绿素及氮含量的研究,东北林业大学硕士论文,2010.6。[6].李凤秀,张柏,刘殿伟,王宗明,宋开山,靳华安,刘焕军,湿地小叶章叶绿素含量的高光谱遥感估算模型术,中国科学院东北地理与农业生态研究所,长春130012;中国科学院研究生院,北京100039,2008.7。[7].杨金红,高光谱遥感数据最佳波段选择方法研究,南京信息工程大学,2005.5。4、该研究的简要内容,重点解决的问题,预期结果或成果4.1研究的简要内容高山松生化组分高光谱定量反演,健康绿色高山松光谱受本身的植被生化组分影响,因此可根据高山松反射光谱与其生化组分的关系,来利用其植被光谱反演其生化参数。通过生化组分定量反演来建立模型,近而对高山松的深化组分及其生长状况作监测。研究主要内容包括:4.1.1高山松叶片主要生化参数的测定及高光谱特征提取利用美国ASD公司生产的FieldSpec3便携式地物光谱仪,通过地面或空中的高山松冠层波谱观测,并同步开展叶绿素a、叶绿素b、叶绿素总量、类胡萝卜素的生化成分分析。4.1.2高光谱数据处理及生化成分相关性分析Hyperion数据的预处理,数据的处理除了基本的几何校正和辐射校正以及定义投影外,还需要处理水汽吸收波段和非定标波段剔除、辐射定标、坏带处理、垂直条纹去除、大气校正,地形校正。对野外实测地面光谱数据进行变换,因为我们测的是叶片光谱数据,不能直接将叶片尺度的叶绿素和全氮素含量估算模型直接运用到遥感影像上,所以在进行实验时需要对叶片光谱数据和冠层叶面光谱数据进行转换,分析特征光谱与对应树木枝叶的叶绿素(a,b)、类胡萝卜素等生化成份进行相关性分析,提取主要生化参数高光谱遥感估测模型的特征波段。4.1.3高光谱遥感估测模型的建立及精度验证通过多元线性逐步回归分析技术、曲线拟合技术以及神经网络技术,探讨冠层高光谱反射率及其变换形式与对应生物化学参数之间的关系,并建立估算模型,然后进行精度检验。4.1.4高山松高光谱特征波段的选取通过特征波段的选择来强化那些最具有可分性光谱波段,一般来说选择最佳波段原则有三点:第一是选择的波段信息量最大化;第二是所选择的波段数据间的相关性小;第三是研究区内地物光谱容易区分。信息含量多、相关性小、地物光谱差异大可分性好的波段就是应该选择最佳的波段来研究,高光谱影像波段的选择基本流程如下:(其中影像的预处理包括:噪声的消除、辐射较正和几何校正。)4.2重点解决问题4.2.1高山松高光谱特征波段的选取如何根据具体的应用目的,在众多的波段中选取最佳波段组合用于假彩色合成以突出感兴趣的区域,对于有效的进行高光谱数据处理、分析及信息提取至关重要,一方面从基于信息量的波段选择出发,首先分析了影像所包含的信息量、各通道之间的相关性以及影像上各地物的光谱特征,选出了那些包含信息量大、相关性小、光谱差异大的波段子集,然后将其与联合熵、协方差矩阵特征值法、最佳指数法和波段指数法等波段选择方法相结合选出了高光谱遥感影像的最佳波段组合;另一方面从基于类间可分性的波段选择出发,先根据目视解译将影像上呈现的主要地物利用非监督分类法将其分为九类,然后再根据高光谱数据具有的空间维和光谱维特性,分别计算各类对在任意三波段组合上的统计距离(标准距离、离散度、B距离)和计算任意两类地物光谱在任意三波段组合上的光谱相关系数、光谱相似系数、以及混合距离和欧氏距离,并取最大者(光谱相关系数取最小者)的波段组合,则此三波段组合为最能区分这两类地物的组合波段,再综合考虑影像上的全部地物,选出最能有效判读整幅影像地物的最佳波段组合,最后对各种方法得出的波段组合以及它们合成的假彩色图像进行了分析[7]。4.2.2高山松高光谱模型的选型研究叶绿素含量定量的反演模型,要从叶片的反射光谱开始,以地面实测叶片叶绿素含量和对应ASD光谱扫描数据为基础研究,从统计学方法和相关合理性角度来对叶绿素含量进行反演模型。方法有多元统计方法、物理光学模型、神经网络的方法,这里主
本文标题:开题报告原始
链接地址:https://www.777doc.com/doc-2428700 .html