您好,欢迎访问三七文档
第一章课后习题详解1.把下例二进制数转换成十进制(1)11000101解197212121210267211000101==)(×+×+×+×(2)101101解026722121212111000101×+×+×+×=)((3)0.01101解4375.0212121532201101.0==)(−−−×+×+×(4)1010101.00111875.8521212121212143024620011.1010101==)(−−×+×+×+×+×+×(5)101001.100105625.41212121212141035210010.101001==)(−−×+×+×+×+×2.把下列十进制数转换成二进制数(1)515121100110136122522222(2)1364222226834176813620001012220001(3)12.34解整数部分(3)1222263112200001小数部分0.34×20.680×21.361×20.720×21.441)()(=0101.110034.12210(4)0.904解0.904×2=1.80810.808×2=1.61610.616×2=1.2321)()(=111.0904.0210(5)105.375解整数部分322222522613610521001012111小数部分0.375×20.7500×21.5001×21.0001)()(=011.1101001375.1052103.把下列各位数转换成十进制数(小数取3位)。(1)168.78)(解165.120)(101015.120168168167)=(=−×+×+×(2)16FCA3)(解16FCA3)(10012316330161016121615163)=(=×+×+×+×(3)8101.1)(解8101.1)(100022125.65818181)=(=×+×+×(4)874.32)(874.32)(102111406.6082838487)=(=−−−××+×+×4.完成数制转换(1)8216(?)(?)6AB3==)(解8216)35266()1101100011101010(6AB3==)((2)8216(?)(?)7.432==)(B解8216)556.2062()10110111.100100001100(7.432==)(B(3)16210(?)(?)27.163==)(解16210)A3.4()01.10100011(27.163==)((4)8210(?)(?)31.754==)(整数部分232222237718894477542010015112211221210018210)23.1362()010011.1011110010(31.754==)(5.列出下列各有权BCD代码的码表。(1)6421码(2)6311码(3)4321码(4)5421码(5)7421码(6)8424码解各代码如表所示十进制数码6421码6311码4321码5421码7421码8421码01234567890000000100100011010001011000100110101011000000010011010001010111100010011011110000000001001000110101100110101011110111100000000100100011010010001001101010111100000000010010001101000101011010001001101000000011001001010100011101101001100010116.完成下列各数的转换。(1)码=(?))(84211026.73解码)=()(84211010011010.0111001167.31(2)码余=(?))(BCD31067.31解码余)=()(BCD31010011010.0110010067.31(3)码=(?))(BCD242110465解码)=()(BCD242110110100110010465(4)10BCD631111101101000=(?))(码-解10BCD631870111101101000)=()(码-(5)10BCD84210101111000020220=(?))(码解10BCD842185970101111000020220)=()(码第2章逻辑函数及其简化1.列出下述问题的真值表,并写出逻辑表达式。(1)有a,b,c,2个输入信号,如果3个输入信号均为0或其中一个为1时,输出信号Y=1,其余情况下,输出Y=0;(2)有a,b,c,2个输入信号,当3个输入信号出现奇数个1时,输出F为1,其余情况下,输出F为0;(3)有3个温度探测器,当探测的温度超过60℃时,输出控制的信号为1;如果探测的温度低于60℃是,输出控制信号Z为0.当有两个或两个以上的温度探测器输出1时,总控制器输出1信号,自动控制调整设备,使温度下降到60℃以下。试写出总控制器真值表和逻辑表达式。解abcYFZ000001010011100101110111111010000110100100010111(1)据题意3个输入信号a,b,c在不同取值组合下的输出Y被列在表2.51中,故Y的逻辑函数表达式为Y=cbacbacbacba+++(积之和)=))()()((cbacbacbacba++++++++(和之积)(2)由于当3个输入信号出现奇数1,输出F为1,所以给逻辑功能为奇校验器,其输入a,b,c在不同取值下对应的输出F被列在表2.5.1中,F的逻辑函数表达式为F=abccbacbaba+++(积之和)=))()()((cbacbacbacba++++++++(和之积)(3)设3个温度探测器的输出信号分别为a,b,c,当温度大于60℃时为1,温度小于等于60℃时为0.设总控制器输出为Z,a,b,c与Z到关系列表2.5.1中。Z的逻辑表达式为Z=abccbacbaba+++))()()((cbacbacbacba++++++++(和之积)2.用真值表证明下列等式:(1)B)AC)((ABCCAAB++=++证明当A,B,C取值在000~111变化时,左式和右式的逻辑值如表2.5.2所示,左式=右式。表2.5.2abc左右0000010100111001011101110101001101010011(2)ACBCABCBCABA=++证明当A,B,C在所有取值组合下左式和右式的逻辑值如表2.5.3所示,由真值表知,左式=右式。表2.5.3abc左右0000010100111001011101111110100011101000(3)ABCABABCACABCBCCABCBABCA++=++证明当A,B,C在所有取值组合下左式和右式的逻辑值如表2.5.4所示,由真值表知,左式=右式。表2.5.4表2.5.4abc左右0000010100111001011101110001011000010110(4)CBAABCCBCABA+=++证明当A,B,C在所有取值组合下左式和右式的逻辑值如表2.5.5所示,由真值表知,左式=右式。表2.5.5abc左右00000101001110010111011110000001100000013.直接写出下列各函数的反函数表达式及对偶函数表达式:(1)E]BC)DB[(AF++=解BEDCBA+++=+++=])[(FBD]E)CB[(AF*(2)D)]CB(DCD)]{BB(CA[F+++=))((F))((F*DCBDCBDCBADCBDCBCDBA++++++=++++++=(3)CBAABCF++=1)(F1)(F*=+++==+++=CBABACCBABAC(4)EBECDBCCDAB++++++=FEBECDCBDCBABEECDCBDCBA)()(F)()(F*+++++=+++++=4.用公式证明下列各等式:(1)DCAAB)DCB(CAAB++=+++证明=右式(多余项))(左式=DCAABABBCDCBCAAB++=+++=++++BCDCA(2)BCABCDCABACA+=+++右式证明左式==+=++=++=+++BCABCACDAACDBCABCACDBCCBA)((3)BDCBCBBCDDCBCDBADCBAACDDCBDCB++=++++++右式)=(==多项式左式==+++++++=++++=+++++=+++++=+++++++++++BDCBCBBCBDCB)ACD(CBDCBACDBDCBACBDCBACDBDCBACDBDCBDCBCDBACDBDCBADCB)(BDD)ADC(BDCB)DCBAACD(BCD)DCB(CD)BADCB(DCDBDDCBCDBAA(4)1=++•++•+•DCADBABCDCDBAB右式==+++++=+++++=+++++=+++++++=++••++•+•1))(())((DCDCBDCBDBDCDCCBDCBDBDCCBDCDBDCDBACBDCDBABDCADBABCDCDBAB(5)))()()()()((YZXWZXYVXWVXYUXWUXUVZWYX++=++++++++++++证明设右式为F,对其求对偶F*Y)(UVZ)X(WY)XZ(WY)XV(WY)XU(WXZYXZWXVYXVWXUYXUWF*+=+++++=+++++=F=(F*)*==左式UVZWYX++5.证明(1)b⊕=⊕aba证明左式=baba+右式=baba+所以左式=右式(2)abababab⊕=⊕=⊕=证明()()abababababababababababababababababab⊕=+⊕=+⊕=+==++=+=+即等式成立。(3)abcabc⊕⊕=证明()()()()()ababcababcababcababcababcabcabcabc=+⊕=+++=+++=+==左式右式(4)()()()c()()()()abcabcababcababcababcababababcababcababcababcababcabcabc⊕⊕==+⊕++++=++=++++=+++=⊕+⊕=证明左式()abcabcabc+==右式(5)()()()()()()()abcabcabcabcabcabcabcabcabcabcabcabcabcababcababcabc⊕⊕==⊕⊕=⊕=⊕+⊕=+⊕=⊕+⊕=⊕⊕⊕⊕⊕=+⊕=+=证明利用ab=ab即等式成立⊕⊕⊕⊕⊕⊕⊕=⊕⊕(6)ABC=ABC=CBA证明ABC=(AB+AB)C=(AB+AB)C+AB+ABC=ABC+ABC+ABC+ABC=(利用AB=AB)A(BC+BC)+A(BC+BC)=A(BC)=ABCABC=BCA+(BC)A=CBA(7)()()()ABCDABACAD⊕⊕⊕=⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕证明右式=[(AB)(AC)+ABAC](AD)=[(AB+AB)(AC+AC)+(AB+AB)(AC+AC)]AD=[ABC+ABC+ABC+ABC]AD=[BC+BC](AD)=(BC)(AD)=BC(AD)=ADBC=(利用AB⊕⊕⊕⊕=AB)ADBC=左式⊕⊕(8)MCD+MCD=(MC)(MD)证明右式=(MC+MC)(MD+MD)=MCD+MCD=左式⊕⊕⊕⊕⊕⊕(9)若XY=1,则X1=Y,Y1=X证明由于XY=XY+XY=1说明X=YX1=X1+0=X=YY1=Y1+0=Y=X6.证明(1)如果ab+ab=c,则ac+ac=b,反之亦成立证明ac+ac=a(ab+ab)+a(ab+ab)=a(ab+ab)+a(ab+ab)=ab+ab=bab+ab=aac+ac+a(ac+ac)=a(ac+ac)+ac=ac+ac=c()()aXbYabbXaYXYaaaXaYXYaXaYaXbY≠=++=+++=+++=+=+(2)如果ab+ab=0,则aX+bY=aX+bY证明由ab+ab=0,得ab,即a=baX
本文标题:数电课后答案
链接地址:https://www.777doc.com/doc-2430817 .html