您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 结构方程模式(STRUCTURALEQUATIONMODELING-SEM).
結構方程模式(STRUCTURALEQUATIONMODELING,SEM)報告學生:黃惠子、張麗娟(健康照護科學研究所)授課教授:陳正昌教授日期:98/06/011結構方程模式2結構方程模式(SEM)是一種用來處理因果關係模式的統計方法,它也可以進行路徑分析(pathanalysis)、因素分析、迴歸分析及變異數分析。名稱潛在變項結構模式(latentvariablestructuralmodeling)線性結構關係模式(linearstructuralrelationsmodel)共變數結構模式(covariancestructuremodel)結構方程模式(structuralequationmodeling)結構方程模式3•結構方程式(SEM)可同時處理一系列或多組自變項與依變項之間關係。•目的:在於考驗潛在變項(Latentvariables)與觀察變項(Manifestvariable)之關係。•分析軟體:可透過LISREL、Amos、SAS、Statisitca、SYSTAT加以分析。SEM可分為下列兩種模式:41.測量模式(measurementmodel):主要描述潛在變項與觀察變項之關係。2.結構模式(structuralmodel):主要描述潛在變數間之因果關係,可以透過路徑分析的概念進行。Lisrel模式的變項種類5◎有四種變項種類:2種潛在變項、2種觀察變項。•潛在變項•被假定為因者,稱為潛在自變項(latentindependentvariable)或稱為外因變項(exogenousvariables)以ξ表示;•被假定為果者,稱為潛在依變項(latentdependentvariables)或稱為內因變項(endogenousvariable)以η表示。•觀察變項•屬於潛在自變項ξ的觀察指標者稱為x變項;•屬於潛在依變項η的觀察指標者稱為y變項。•潛在自變項ξ與y變項無直接關係,潛在依變項η與x變項亦没有直接關係,而x與y變項亦没有直接關係。LISREL八大參數矩陣符號列表6符號與發音縮寫代表意義結構模型矩陣ΒbetaBE描述潛在依變數間(η)之直接影響效果ΓgammaGA描述潛在自變數(ξ)對潛在依變數(η)之直接影響效果測量模型矩陣ΛxLambdaxLX描述觀察變項X被潛在自變數(ξ)解釋的係數矩陣(迴歸係數)ΛyLambdayLY描述觀察變項Y被潛在依變數(η)解釋的係數矩陣(迴歸係數)ΦphiPI潛在自變項ξ間的關係殘差矩陣ΨpsiPS描述結構方程式殘餘誤差ζ之變異數共變數矩陣ΘδThetaDeltaTD觀察變數之x測量誤差之變異數共變數矩陣(X變項殘差)ΘεThetaEpsilonTE觀察變數之y測量誤差之變異數共變數矩陣(Y變項殘差)步驟一:發展理論模式步驟二:建立因果關係徑路圖及細列估計參數步驟三:評估模式的辨認步驟四:進行參數估計步驟五:評鑑模式的適配度LISREL的分析五個步驟7步驟一:發展理論模式8在發展理論模式時,首先必須注意的是,以LISREL來考驗因果關係時,基本上是屬於驗證的方法,這種驗證的方法通常是由理論來引導研究,而非以資料來引導研究。步驟二:建立因果關係徑路圖9直線箭號表示因果關係,箭頭所指者為結果,箭頭來源為原因,如γ表示潛在自變項ξ對潛在依變項η的影響。曲線雙箭頭表示兩個理論建構有相關,但是因果關係係不明,其因果關係也不是研究者所要探究的。自變項依變項徑路圖描述因果關係LIESER符號描述徑路圖X1X2→Y1X1Y1X2ξ1ξ2η1ζ1加入觀察指標及各項係數後的因果模式圖1012321X1X2X3X4X5X6Y4Y3Y2Y1122123121312222311x32x21x11x42x53x63y11y21y32y42123456432121P506步驟二:細列估計參數此一步驟的主要工作是將徑路圖轉換成結構方程式及測量模式,同時細列出所要估計的參數,以利將來電腦程式的撰寫。結構方程式η=Γξ+Bη+ζ11潛在依變項=潛在自變項+潛在依變項+殘差m123123m1=111+122++12=222+233+211+23=+311+322+3X、Y的測量模式12X=x+Y=y+X1=λx111+1Y1=λy111+1X2=λx211+2Y2=λy211+1X3=λx322+3Y3=λy322+3X4=λx422+4Y4=λy422+4X5=λx533+5Y5=λy533+5X6=λx633+6Y6=λy633+6步驟三:評估模式的辨認13所謂的辨認,是指辨認參數是否有唯一解。如果遇到無解或是並非唯一解時,電腦將無法複製矩陣,估計就會自動終止。步驟四:進行參數估計14進行參數估計時,研究者必須根據前述三個步驟撰寫電腦程式。電腦程式撰寫完成後,在Windows的狀態下進入LISREL系統(或進入系統後再撰寫程式),之後讀入程式檔的名稱,再執行程式即可。步驟五:評鑑模式的適配度15評鑑的目的,乃是要從各方面來評鑑理論模式是否能解釋實際觀察所得的資料,或者說理論模式與實際觀察所得資料的差距有多大(Anderson&Gerbing,1988)。模式的基本適配標準:16注意下列幾項:1.不能有負的誤差變異。2.誤差變異必須達顯著水準。3.估計參數之間相關的絕對值不能太接近1。4.因素負荷量不能太低或太高,最好介於.50~.95之間。5.不能有很大的標準誤。Bagozzi、Yi(1988)、步驟五:評鑑模式的適配度17模式的外在品質指標數值範圍理想的數值1.2值0以上不顯著2.GFI0~1之間,但可能出現負值至少0.9以上3.AGFI0~1之間,但可能出現負值至少0.9以上4.RMR若分析矩陣是相關矩陣,在0~1之間;若分析矩陣是變異數共變數矩陣,則0以上。若分析矩陣是相關矩陣,必須低於0.05,最好低於0.025;若分析矩陣是共變數矩陣,SRMR值應小於0.05。5.TCD0~1之間至少0.9以上6.Q-plot.標準化殘差分佈線大於45°,且成直線。7.2值比率0以上小於38.NFI0~1之間至少0.9以上9.IFI0以上,但大多在0~1間至少0.9以上10.NNFI0以上,但大多在0~1間至少0.9以上步驟五:評鑑模式的適配度18模式的內在品質1.個別項目的信度(individualitemreliability)在0.5以上。2.潛在變項的成份信度(compositereliability)在0.6以上。3.潛在變項的平均變異抽取(averagevarianceextracted)在0.5以上。4.所有估計的參數都達顯著水準。5.標準化殘差(standardizedresiduals)的絕對值必須小於1.96。6.修正指標(modificationindices)小於3.84。19評鑑項目理想的評鑑結果是否沒有負的誤差變異?是誤差變異是否都達顯著水準?是參數間相關的絕對值是否未太接近1?是因素負荷量是否介於0.5~0.95之間?是基本適配指標是否沒有很大的標準誤?是2值是否未達顯著?是2值比率是否小於3?是GFI指數是否大於0.9?是AGFI指數是否大於0.9?是RMSEA指數是否低於0.05?是RMR/SRMR指數是否低於0.05?是Q-plot的殘差分佈線的斜度是否大於45°?是NFI指數是否大於0.9?是IFI指數是否大於0.9?是整體模式適配標準︵外在品質︶NNFI指數是否大於0.9?是個別項目的信度是否在0.5以上?是潛在變項的成份信度是否在0.6以上?是潛在變項的平均變異抽取是否在0.5以上?是所估計的參數是否都達顯著水準?是標準化殘差的絕對值是否都小於1.96?是模式內在品質修正指標是否都小於3.84?是20理論性發展模式設定模型辨識抽樣與測量參數估計模型契合度估計模型修飾討論與結論階段一模式發展階段二估計與評鑑結構方程模式的基本程序邱,2006心無旁騖主動複習力求甚解學習態度社會資本負面文化資本學業成就家庭教育資源家庭社經地位財務資本文化資本母親教育父親教育全家收入生活不良習性學校不良行為一般分析能力數學分析能力潛在自變項觀察變項反映性指標潛在依變項廣義的結構方程模式數個測量模式及一個結構模式變項間關係複雜,模式界定時必須遵循簡約原則(principleofparsimony)在SEM分析中,同一組變數的組合有多種可能,不同關係模式可能代表特定理論意義,用一個較簡單的模型來反應變項間的真實關係,避免犯下第一類型的錯誤λY63Y6Y7Y8η3λY83λY73γ11Y2η2λY104η4λY94η1ξ1Y3Y1X2X1X3λY52λY42λY21λY31λY11λX21λX11λX31γ31γ41β41γ21β42β43Y4Y5Y9Y10ε6ε7ε8ε1ε2ε3ε4ε5ε9ε10ζ4ζ2ζ1ζ3δ1δ2δ3測量模式結構模式參數標註的寫法:先寫箭頭所指處,再寫箭頭來源處。例如:表示影響表示相關的雙箭頭,只要註明上箭頭所指的兩個潛在變項的號碼。例如:表示與有相關12121313p569間接效果0.68*0.16-0.07*-0.080.11*0.28直接效果0.35家庭社經地位全家收入e3.63母親教育e2.87父親教育e1.86家庭教育資源文化資本e4社會資本e5財務資本e6.91.95.97負面文化資本生活不良習性e7學校不良行為e8.92.98學習態度力求甚解e11主動學習e10心無旁騖e9.79.91.83學業成就一般分析能力e12數學分析能力e13.79.84.11.68.16.28-.07-.08z1z2z4z3.35SEM適配度指標的潛藏問題:最佳模式難求李茂能,2006嘉義大學潛藏問題認為適配度佳之模式即為好模式。不知或忽視對等模式的存在。遺漏重要變項或指標而包含不重要變項或指標。結構係數因測量誤差之修正而過度膨脹。界定錯誤的測量模式。測量模式應優先檢驗查看適配度之外,還要檢驗測量指標之信度,這些測量指標之信度最好要在.50(標準化係數在.70以上)以上指標信度的重要性把不重要的變項納入模式中或把重要變項的遺漏了,通常會導致不正確的參數估計值與標準誤。只在所界定的模式正確時,這些參數估計值與標準誤才是正確的(Tomarken&Waller,2005)。當測量指標的信度過低時,亦可能導致過度高估結構係數測量模式界定錯誤問題效果指標與原因指標需分辨清楚測量指標信度的好壞與測量模式界定的正確性會嚴重影響到最適模式的選擇與結構係數估計值之正確性。結論•共變數導向的SEM有其統計分析上之優勢,但亦有其應用上的限制。事實上,單靠SEM適配度佳並無法分辨該提議模式為最適模式(Agoodfit?Agoodmodel)或證實該模式中的因果關係(Agoodfit?AcausalLink)。•測量模式(含測量指標信度)之評估為進行SEM分析的首要任務,滿足前述信度之最低要求後,再進行結構模式之評析。當測量模式不當時(尤其指標的信度不佳時),即應重新尋找或增加更有預測力的指標變項後,再進行結構模式之分析,否則可能會導致離譜的結構關係。參考文獻30邱皓政(2006).結構方程模式:LISREL的理論、技術與應用.台北:雙葉書廊。陳正昌等(2009).多變量分析方法統計軟體應用.台北:五南。
本文标题:结构方程模式(STRUCTURALEQUATIONMODELING-SEM).
链接地址:https://www.777doc.com/doc-2437118 .html