您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 我国石油消耗量与相关因素的分析
我国石油消耗量与相关因素的分析摘要:一国石油消费总量与社会经济发展有着密切的关系,通过建立计量经济模型寻求石油消费总量与社会经济有关指标的函数关系,可以对宏观调控起到更好的指导作用。本文利用中国统计年鉴上的数据,建立石油消费量计量经济学模型方法和进行各项检验的详细过程。关键字:石油消耗量民用汽车拥有量城镇居民可支配收入经济计量模型1文献综述2石油消耗量相关影响因素的分析2.1理论假说及相关因素的选取2.2数据的收集和整理根据上述分析,我们选取1989年—2005年我国石油消耗量(Y)、民用汽车拥有量(X1)、国内总产值(X2)、工业总产值(X3)、城镇居民可支配收入(X4)的数据作为实证,进行分析表一我国1983—2005年相关指标数据统计表年份石油消耗量(万t标准煤)民用汽车拥有量(万辆)国内总产值(亿元)工业总产值(亿元)城镇居民人均可支配收入(元)198916575.71511.3215677218801373199016384.7551.3618667.82238511510199117746.89606.1121781.5282251700199219104.75691.7426923.48370662026199321110.73817.5834634526922577.4199421356.24941.9546759.4769093496.2199522955.8104058478.1918934283199625010.641100.0867884.699595.64836.9199728110.791219.0974462113732.75160.3199828426.011319.3783451190485254.1199930205.651452.94820671261105854200032158.051608.918944285673.76280200132749.661802.0497315954496859200235535.742053.171051721107767702200338865.352382.931172511422318472200445380.522693.71159878.34201722.199420200546896.993159.66183868251619.510493资料来源:中国统计年鉴(1989—2005)3模型的回归根据前面的分析,我们可以设回归模型为Yt=B0+B1X1t+B2X2t+B3X3t+B4X4t+t(t为随机误差项)用OLS法估计模型,下面给出Eviews输出结果DependentVariable:YMethod:LeastSquaresDate:12/10/12Time:13:38Sample:19892005Includedobservations:17VariableCoefficientStd.Errort-StatisticProb.C12091.91855.588114.132870.0000X13.4469062.4758081.3922350.1891X20.1096490.0666041.6462810.1256X3-0.0197570.019402-1.0183200.3286X40.9555430.6000661.5923970.1373R-squared0.991269Meandependentvar28151.42AdjustedR-squared0.988359S.D.dependentvar9533.502S.E.ofregression1028.613Akaikeinfocriterion16.94974Sumsquaredresid12696533Schwarzcriterion17.19480Loglikelihood-139.0728F-statistic340.6062Durbin-Watsonstat1.683234Prob(F-statistic)0.000000得到估计模型为Yt=12091.91475+3.446905674X1t+0.1096489408X2t-0.0197572507X3t+0.9555433156X4t+t(14.13*)(1.3922)(1.6463)(-1.0183)(1.592397)【*号表示通过5%的t检验】R2=0.991269F=340.6062DW=1.683234由于R2较大(接近1),而且F值F0.05(4,12)=5.41故认为石油消耗量与上述解释变量间总体线性关系显著,但是,由于所有解释变量的系数都未能通过t检验,故认为解释变量间存在多重共线性。4计量经济学检验4.1多重共线性检验(1)解释变量间相关系数的检验X1t、X2t、X3t、X4t的相关系数如下X1tX2tX3tX4tX1t10.9875925782080.9294006973430.981995070245X2t0.98759257820810.96343490290.985557430429X3t0.9294006973430.963434902910.929803435328X4t0.9819950702450.9855574304290.9298034353281由表格可知,解释变量间存在高度共线性。(2)简单的回归分析分别做Y与X1t、X2t、X3t、X4t间的回归1.Yt=11166.14373+12.05540676X1t+t(16.24824*)(28.08238*)R2=0.981334F=788.6199DW=1.3404942.Yt=13401.11124+0.1961161467X2t+t(21.70993*)(28.13047*)R2=0.981397F=791.3234DW=1.0497363.Yt=13865.24249+0.1446940153X3t+t(8.370176*)(10.07669*)R2=0.871289F=101.5398DW=0.6135544.Yt=11052.81558+3.329744299X4t+t(15.08057*)(26.46074*)R2=0.979026F=700.1706DW=1.061119根据经济理论分析和回归比较,由于X2t的R2最大,所以选第二个回归模型为初始回归模型。(3)逐步回归由上已知初始回归模型为Yt=13401.11124+0.1961161467X2t+t下面进行逐步回归A1.加入X1t,对Yt关于X1t、X2t作最小二乘回归,得Yt=12187.42827+6.049936935X1t+0.09892061482X2t+t(17.40306*)(2.611863*)(2.625238*)R2=0.987492F=552.6375DW=1.351361可以看出,加入X1t后,拟合优度R2增大,参数估计值的符号也正确,而且,两个解释变量都通过t检验,并没有影响X2t的显著性,所以模型中保留X1t2.再加入X3t,对Yt关于X1t、X2t、X3t作最小二乘估计,得Yt=12793.7178+3.950009612X1t+0.1694145114X2t-0.02987454016X3t+t(16.49838*)(1.521247)(2.911822*)(-1.541146*)R2=0.989424F=405.4048DW=1.446148可以看出,加入X3t后,拟合优度提高了,但X3t的系数明显不符合经济学检验,并且X1t的系数不显著(未通过5%的t检验),说明模型中存在严重的多重共线性,所以此模型不可取。3再加入X4t,对Yt关于X1t、X2t、X4t作最小二乘估计,得Yt=11586.98199+4.581390674X1t+0.05551217298X2t+1.15564642X4tt+t(16.59441*)(2.069162)(1.381606)(2.035358)R2=0.990515F=452.5089DW=1.785385可以看出,加入X4t后,拟合优度提高了,但X1t、X2t、X4t的系数不显著,说明模型存在多重共线性,所以此模型不可取。B1.加入X3t,对Yt关于X1t、X3t作回归,得Yt=11225.12422+10.9973568X1t+0.01450104821X3t+t(16.24723*)(9.440612*)(0.977271)R2=0.982526F=393.6061DW=1.425229由于X3t的系数不显著,所以此模型也不可取。C1.加入X4t,对Yt关于X1t、X4t作回归,得Yt=10958.98908+6.472879406X1t+1.572034174X4t+t(20.03568*)(3.604600*)(3.165783*)R2=0.989122F=636.4901DW=1.972480经分析,此模型也符合相关检验2.再加入X3t,对Yt关于X1t、X3t、X4t作回归,得Yt=10990.20825+6.266648457X1t+1.512219169X4t+0.005737688805X3t+t(19.38043*)(3.295314*)(2.867734*)(0.461498)R2=0.989297F=400.5439DW=1.992409显然,此模型不满足t检验,所以此模型也不可取。综上,Yt=12187.42827+6.049936935X1t+0.09892061482X2t+t(A)与Yt=10958.98908+6.472879406X1t+1.572034174X4t+t(B)都满足相关的检验,又因为A的R2以及F的值都小于B的R2及F的值,所以我们选取B为最终的模型,即Yt=10958.98908+6.472879406X1t+1.572034174X4t+t此模型Eviews输出结果DependentVariable:YMethod:LeastSquaresDate:12/10/12Time:15:25Sample:19892005Includedobservations:17VariableCoefficientStd.Errort-StatisticProb.C10958.99546.973820.035680.0000X16.4728791.7957273.6046000.0029X41.5720340.4965703.1657830.0069R-squared0.989122Meandependentvar28151.42AdjustedR-squared0.987568S.D.dependentvar9533.502S.E.ofregression1062.984Akaikeinfocriterion16.93433Sumsquaredresid15819075Schwarzcriterion17.08137Loglikelihood-140.9418F-statistic636.4901Durbin-Watsonstat1.972480Prob(F-statistic)0.0000004.2异方差检验用怀特检验法,辅助回归模型的Eviews输出结果如下WhiteHeteroskedasticityTest:F-statistic2.963147Probability0.061918Obs*R-squared9.756355Probability0.082441TestEquation:DependentVariable:RESID^2Method:LeastSquaresDate:12/11/12Time:09:27Sample:19892005Includedobservations:17VariableCoefficientStd.Errort-StatisticProb.C9436757.3648822.2.5862480.0253X1-30251.8110925.49
本文标题:我国石油消耗量与相关因素的分析
链接地址:https://www.777doc.com/doc-2442348 .html