您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 小学奥数行程问题测试题
01、王师傅驾车从甲地开往乙地交货。如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地。可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时55千米。如果他想按时返回甲地,他应以多大的速度往回开?解:设甲、乙距离为60×55=3300千米,往返时间应该是:3300×2/60=110(小时)实际从甲到乙时间:3300/55=60(小时),剩下返回时间:110-60=50(小时)从乙回甲的速度应该是:3300/50=66(千米)答:他应以每小时66千米的速度往回开。也可以这样考虑:“如果他往返都以每小时60千米的速度行驶”,这就相当于往返的平均速度为60千米/小时,根据平均速度=2/(1/前往速度+1/返回速度)可以直接求解。解答:返回速度=1/(2/平均速度-1/前往速度)=1/(2/60-1/55)=66千米/小时。另给一种解法:去时,计划速度:实际速度=60:55=12:11,计划用时:实际用时=11:12;返回时,要按时到达,则计划用时:实际用时=11:(2*11-12)=11:10,那么计划速度:实际速度=10:11,所以,返回时的速度=60*(11/10)=66千米/小时。02、甲、乙两地相距100千米,小张先骑摩托车从甲地出发,1小时后小李驾驶汽车从甲地出发,两人同时到达乙地。摩托车开始速度是每小时50千米,中途减速后为每小时40千米。汽车速度是每小时80千米,汽车曾在途中停驶10分钟。那么小张驾驶的摩托车减速是在他出发后的多少小时?解:汽车行驶100千米要用时间100/80=1(1/4)(小时)所以摩托车行驶时间是1(1/4)+1+1/6=2(5/12)(小时)摩托车以每小时40千米行驶2(5/12)小时行驶距离为40×2(5/12)=96(2/3)千米100-96(2/3)=10/3(千米)所以用50千米行驶(10/3)/(50-40)=1/3(小时)答:小张驾驶的摩托车减速是在他出发后的1/3小时。03、一位少年选手,顺风跑90米用了10秒钟。在同样的风速下,逆风跑70米,也用了10秒钟。问:在无风的时候,他跑100米要用多少秒?解:顺风速度每秒90/10=9(米),逆风速度每秒70/10=7(米)无风速度每秒(9+7)/2=8(米),跑100米需要100/8=12.5(秒)答:在无风的时候,他跑100米要用12.5秒。04、一条小河流过A,B,C三镇。A,B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米。B,C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米。已知A,C两镇水路相距50千米,水流速度为每小时1.5千米。某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时。那么A,B两镇间的距离是多少千米?解:汽船顺流速度每小时11+1.5=12.5(千米)木船顺流速度每小时3.5+1.5=5(千米)在汽船和木船上的时间一共是8-1=7(小时)如果全在汽船上,从A到C可以行12.5×7=87.5(千米),比实际多出87.5-50=37.5(千米)汽船比木船每小时快11-3.5=7.5(千米)所以乘木船时间是37.5/7.5=5(小时),乘木船距离是5×5=25(千米)A和B离=50-25=25(千米)答:A,B两镇间的距离是25千米。05、一条大河有A,B两个港口,水由A流向B,水流速度是每小时4千米。甲、乙两船同时由A向B行驶,各自不停地在A,B之间往返航行,甲船在静水中的速度是每小时28千米,乙船在静水中的速度是每小时20千米。已知两船第二次迎面相遇的地点与甲船第二次追上乙船(不算甲、乙在A处同时出发的那一次)的地点相距40千米,求A,B两个港口的距离。解:甲顺水速度:28+4=32,甲逆水速度:28-4=24乙顺水速度:20+4=24,乙逆水速度:20-4=16第二次相遇地点:从A到B:甲速:乙速=32:24=4:3,甲到B,乙到E;甲从B到A,速度24,甲速:乙速=24:24=1:1,甲、乙在EB的中点F点第一次相遇;乙到B时,甲到E,这时甲速:乙速=24:16=3:2,甲到A点时,乙到C点;甲又从A顺水,这时甲速:乙速=32:16=2:1,所以甲、乙第二次相遇地点是2/3AC处的点H,AH=2/3×1/2AB=1/3AB第二次追上地点:甲比乙多行1来回时第一次追上,多行2来回时第二次追上。设AB距离为1个单位甲行一个来回2AB时间1/32+1/24=7/96乙行一个来回2AB时间1/16+1/24=10/961来回甲比乙少用时间:10/96-7/96=1/32甲多行2来回的时间是:7/96×2=14/96说明乙第二次被追上时行的来回数是:(14/96)/(1/32)=4(2/3),甲第二次追上乙时,乙在第5个来回中,甲在第7个来回中。甲行6个来回时间是7/96×6=7/16,乙行4个来回时间是10/96×4=5/12,7/16-5/12=1/48,从A到B甲少用时间:1/24-1/32=1/96说明第二次追上是在乙行到第五个来回的返回途中。1/48-1/96=1/96,从B到A,甲比乙少用时间:1/16-1/24=1/48,(1/96)/(1/48)=1/2,追上地点是从B到A的中点C处。根据题中条件,HC=40(千米),AH=1/3AB,AC=1/2AB,HC=AC-AH=(1/2-1/3)AB所以,AB=HC/(1/2-1/3)=40/(1/6)=240(千米)答:A,B两个港口的距离是240千米。06、甲、乙两船分别在一条河的A,B两地同时相向而行,甲顺流而下,乙逆流而上。相遇时,甲、乙两船行了相等的航程,相遇后继续前进,甲到达B地、乙到达A地后,都立即按原来线路返航,两船第二次相遇时,甲船比乙船少行1000米。如果从第一次相遇到第二次相遇时间相隔1小时20分,那么河水的流速为每小时多少千米?解:第一次相遇时,甲、乙两船行了相等的航程,速度是甲+水=乙-水,甲=+2水=乙甲从B、乙从A开始开第二次相遇时间是:1小时20分钟/2=2/3小时,速度差是4水1/(2/3)/4=3/8(千米)答:河水的流速为每小时3/8千米。07、甲、乙两人骑自行车从环行公路上同一地点同时出发,背向而行。现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?解:45分钟乙行的距离=(70-45)/70=5/14(圈)乙行每分钟行=5/14/45=1/126(圈)答:乙走一圈的时间是126分钟。08、如下图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇。求此圆形场地的周长。解:设周长为2X米。从开始到第1次相遇,甲、乙共走X,其中甲走X-100,乙走100;第1次到第2次相遇,甲、乙共走2X,其中甲走100+X-60=X+40,乙走X-100+60=X-40,甲多走X+40-(X-40)=80。得第1次相遇时甲比乙多走80/2=40,X-100=100+40,所以X=240周长2X=2×240=480(米)答:此圆形场地的周长是480米。用算术法来解答可以这样考虑:甲乙两人在直径两端作相向运动,第一次相遇即合走了半圈,这半圈中乙走了100米,甲走了半圈差100米;从第一次相遇到第二次相遇,两人合走了一圈,甲走1圈差200米,前后共走了1圈半差300米,根据“在甲走完一周前60米处又第二次相遇”,半圈就是300-60=240米,所以1圈是480米。09、甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的2/3。甲跑第二圈时速度比第一圈提高了1/3;乙跑第二圈时速度提高了1/5。已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,那么这条椭圆形跑道长多少米?解:假设甲开始速度是X,跑道长是Y第一圈甲速度X,乙速度是2/3X第一次相遇时,甲跑了3/5Y,甲跑完一圈时,乙跑2/3Y,这时甲速度是(1+1/3)X=4/3X,乙跑完一圈时,甲返回2/3Y乙返回时,速度是(1+1/5)×2/3X=4/5X这时:甲速度/乙速度=(4/3X)/(4/5X)=5:3甲、乙跑剩下的1/3Y到相遇时,甲跑了5/8×1/3Y,乙跑了3/8×1/3Y=1/8Y,距离出发点是1/8Y。3/5Y-1/8Y=190(米),所以Y=400(米)答:这条椭圆形跑道长400米。用算术方法解答:跑第一圈时,乙的速度是甲速度的2/3,乙速:甲速=2:3,假设乙第一圈速度为2,则第二圈速度2*(1+1/5)=2.4;甲第一圈速度3,第二圈速度3*(1+1/3)=4;第一次相遇,甲跑3/5圈,乙跑2/5圈,当甲跑完一圈时,乙还有1/3圈没跑完;在乙跑第一圈的剩下1/3时,甲与乙的速度比为4:2,即乙跑完第一圈,甲又跑了第二圈的2/3,当乙掉头跑第二圈至他们第二次相遇时,只合跑了1/3圈,其中乙跑了=(1/3)*(2.4/6.4)=1/8,与第一次相遇点的距离=3/5-1/8=19/40圈,所以,跑道长=190/(19/40)=400米。10、如下图,在400米的环行跑道上,A,B两点相距100米。甲、乙两人分别从A,B两点同时出发,按逆时针方向跑步。甲甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟。那么甲追上乙需要时间是多少秒?解:答:甲实际跑100/(5-4)=100(秒)时追上乙甲跑100/5=20(秒),休息10秒;乙跑100/4=25(秒),休息10秒甲实际跑100秒时,已经休息4次,刚跑完第5次,共用140秒;这时乙实际跑了100秒,第4次休息结束。正好追上。答:甲追上乙需要时间是140秒。11、周长为400米的圆形跑道上,有相距100米的A,B两点。甲、乙两人分别从A,B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B。如果以后甲、乙的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?解:乙从B到相遇点再返回,路程相同,所以甲从A到相遇点、再从相遇点回到A的距离也相同,都是400/2=200(米)第一次相遇甲跑200米,乙跑100米这时2人从相遇点开始同向跑,甲多跑一圈追上乙所以甲一共跑了200+200×(400/100)=1000(米)答:甲共跑了1000米。12、如下图,一个长方形的房屋长13米,宽8米。甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米。问:经过多长时间甲第一次看见乙?解:甲要看到乙,最大距离是13米,至少要比乙多跑2×8=16(米),这段时间是16/(3-2)=16(秒)。这时甲跑了16×3=48(米),转过一圈后又离出发点A点6米处,乙跑了16×2=32(米),过B点11米处。甲离B点还有2米,需要2/3秒到达B点,此时乙还拐弯,可以看到。16+2/3=16(2/3)(秒)答:经过16又2/3秒甲第一次看见乙。13、如下图,学校操场的400米跑道中套道300米小跑道,大跑道与小跑道有200米路程相重。甲以每秒钟6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向,跑,两人同时从跑道的交点A处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?解:甲顺时针从A到B时,乙还在逆时针从A到B路上,2人在甲从B到A之间第一次相遇。甲跑完一圈回到A时,乙跑了(400/6)×4=800/3300米,还没回到A,所以甲跑第二圈时和乙第二次相遇。甲第二次到B用了(400+200)/6=100秒,这时乙跑了4×100=400米,正在从A到B中间,与B相距200-100=100米,2人还需要100/(6+4)=10秒相遇,甲还要跑6×10=60米。甲一共跑400+200+60=660(米)答:当他们第二次相遇时,甲共跑了660米。14、如下图,正方形ABCD是一条环行公路。已知汽车在AB上时速是90千米,在
本文标题:小学奥数行程问题测试题
链接地址:https://www.777doc.com/doc-2504046 .html