您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 小学数学应用题的研究(一)
小学数学应用题的研究(一)——九年义务教育小学数学教材中应用题的内容及编排的基本情况人民教育出版社小学数学室王永春一、基本内容(试用)》(以下简称义教大纲)是原国家教委于1992年颁布的。义教大纲根据九年义务教育的性质和任务、社会和科技发展的需要及学生的接受能力对应用题的内容进行了一些改进,主要有以下两点。1.适当降低难度。义教大纲对应用题教学内容明确规定:整数、小数应用题最多不超过三步,四步应用题(只限于容易的)作为选学内容;分数、百分数应用题以一、两步计算的为主,最多不超过三步(只限比较容易的)。2.加强联系实际。义教大纲强调“应用题要注意联系学生的生活实际”。一是应用题本身的内容要联系实际,二是扩大了联系实际的范围,如在百分数应用题中增加了利息的计算等。教学内容教学要求一年级比较容易的加法、减法和乘法一步计算的应用题。会根据加、减法的含义,解答比较容易的加、减法一步计算的应用题。知道题目中的条件和问题,会列出算式,注明得数的单位名称,口述答案。二年级加、减、乘、除法一步计算的应用题。比较容易的两步计算的应用题。会解答加、减、乘、除一步计算的应用题。初步学会口述应用题的条件和问题,会书写答案。会分步列式解答比较容易的两步计算的应用题。三年级常见的数量关系。列综合算式解答两步和比较容易的三步计算的应用题。掌握常见的数量关系。会列综合算式解答两步计算的应用题和比较容易的三步计算的应用题。初步学会口述解题思路。四年级解应用题的一般步骤。相遇问题。列综合算式解答三步计算的应用题。*比较容易的四步计算的应掌握解应用题的一般步骤,会列综合算式解答三步计算的应用题。初步学会列方程解应用题。能初步运用所学的知识解决生活中一些简单的实际问题。用题。五年级分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利息的计算)。比例尺,按比例分配。会解答分数、百分数应用题(最多不超过三步)。会用比例的知识解答基本的应用题。会看地图上的比例尺。进一步提高用算术方法和用方程解应用题的能力。会有条理地说明解题思路。1.应用题的结构纲对小学数学应用题教学内容和教学要求的规定,贯彻把数学的逻辑顺序同儿童的认知发展顺序相结合的编写原则,按照应用题数量关系的繁简,分析推理的难易以及应用题内容之间的联系,对小学数学应用题进行编排的。并且注意加强应用题与小学数学其他各部分知识间的联系,使它们螺旋上升,循序渐进,互相配合,互相促进。个方面。(1)一步应用题采取分散与集中相结合的原则编排,并注意与计算适当配合。分散编排,使学生理解算理,掌握解答方法。如求和、求差、求几个相同加数的和、除法中的两种分法等应用题,都是这样编排的。等应用题,原来分散在一、二年级编排。这几种应用题实际上有着相似的数量关系,因此现在集中在同一册,适当靠近,以便使学生更好地了解它们在数量关系和解题思路上的联系,从而较顺利地掌握解答方法。行逆向思考,分析数量关系难一些。因此,教材采取分散编排的方法,以便学生逐步掌握。在进行分散编排时,也注意与已学的有关的应用题进行联系和对比。条件及连续两问的应用题,以便加深学生对所学的应用题的结构和数量关系的理解,为学习两步应用题打好基础。(2)调整两步应用题的编排顺序,加强应用题的内在联系。件之间及已知条件与问题之间的数量关系也复杂了。解答两步应用题的关键是提出中间问题,这也是解答两步应用题的难点所在。为了使学生顺利地掌握两步应用题的解答方法,义务教材在编排上主要有以下几个特点。a)使学生较好地掌握常见的简单应用题;b)进行了较多的“提问题”、“填条件”的练习;c)学会解答一些连续两问的应用题。的,这样便于学生通过分析、比较,找出需要的中间问题,从而掌握两步应用题的分析和解答方法。于学生初步掌握两步应用题的分析和解答方法,培养学生分析推理和举一反三的能力,促进学生思维能力的发展。(3)三步应用题加强与两步应用题的联系,重视解题能力的培养。一个条件把两步应用题改成三步应用题,使学生通过迁移、类推,比较顺利地掌握解题方法。低,但是在培养分析和解答应用题的能力方面有所加强。例如,在总结解答应用题的一般步骤时,注意培养学生如何摘录应用题的条件和问题,增加检验方法的指导等。学生在学习解答三步应用题时,注意引导学生用不同的方法解题,以培养学生灵活地分析和解题能力。另外,应用题还注意联系学生生活和生产实际,以培养学生解决简单的实际问题的能力。(4)加强列方程解应用题。(主要是逆思考的)化难为易,既可以节省教学时间,减轻学生学习负担,又可以提高学生的解题能力。了列方程解应用题后,学生可以根据应用题的具体特点选择较简便的解法,这样有利于提高学生的解题能力,增强思维的灵活性。级安排的一步应用题,第一册先出现用图画表示的应用题、用表格表示的应用题,再出现加减法的有图有文字的应用题。第二册出现求两数相差多少的应用题,为后面学习求比一个数多(或少)几的数的应用题打下基础;接着安排“提问题”、“填条件”的应用题,为学习两步应用题做准备;然后安排连续两问的应用题,这也是学习两步应用题的基础;最后结合乘法的意义安排了乘法应用题及相应的“提问题”。法的意义出现把一个数平均分成几份求一份是多少的应用题和求一个数里包含几个另一个数的应用题,再出现求一个数是另一个数的几倍的应用题和求一个数的几倍是多少的应用题。在学生掌握了一些简单应用题,进行过一些“提问题”、“填条件”的练习,学习了连续两问的应用题等的基础上,通过改变一步应用题的一个已知条件来引入两步应用题,根据应用题数量关系的内在联系出现加减复合(乘加、乘减)两步应用题,连减的两步应用题,加除、减除复合的两步应用题。第四册先出现稍复杂的(需要逆思考的)一步应用题,主要是反叙的求比一个数多(少)几的数的应用题和已知一个数的几倍是多少求这个数的应用题;然后在第三册的基础上,继续出现一些含有三个已知条件的比较容易的两步应用题,并适当出现一些含有两个已知条件的两步应用题。的结构及解答方法有了一定的基础,所以三年级主要安排了稍复杂的两步应用题和比较简单的三步应用题。第五册首先结合乘数、除数是两位数的乘、除法,相应地安排了乘法应用题和常见的数量关系、除法应用题和常见的数量关系;然后出现连乘、连除、归一、归总(某一种量不变,一种量随着另一种量的变化而变化)等两步应用题。第六册先结合加、减、乘、除法各部分间的关系安排用列含有未知数x的等式解答加、减、乘、除一步应用题;然后出现连乘、连除应用题(其中的未知量随着两个量的变化而变化);然后在两步应用题的基础上通过增加一个条件,引出三步应用题。程解两步、三步应用题。第七册首先安排了一般的三步应用题(总结解答应用题的一般步骤和方法),接着在第五册基础上编排归一、归总加条件的三步应用题,然后安排了有关计划与实际比较的三步应用题和行程问题(三步)。一般的整、小数应用题到第七册告一段落,第八册安排列方程解两步(需要逆思考的)、三步应用题和含有两个已知条件的两步应用题(“和倍”、“差倍”问题),最后安排了用方程解和用算术解应用题的比较。据分数、百分数、比例等教学内容,相应地安排了分数应用题、百分数应用题、比例应用题。适当增加综合地、灵活地运用所学知识解决简单的实际问题的练习。第九册首先结合分数乘除法的意义分别安排了分数乘除法一步、两步应用题及乘除复合的分数应用题,然后编排了一般的分数、小数应用题,稍复杂的求一个数的几分之几是多少以及已知一个数的几分之几是多少求这个数的应用题,接着安排了稍复杂的分数乘法和除法应用题的对比,最后编排了工程问题。第十册在分数应用题的基础上编排了求一个数是另一个数的百分之几的应用题,稍复杂的求一个数是另一个数的百分之几的应用题及已知一个数的百分之几是多少求这个数的应用题;然后结合比例的意义和基本性质编排了比例尺,用比例解应用题及稍复杂的比例应用题(两步,而且有多种解法)。内容年级一步二步三步一年级一册图画应用题,表格应用题,图文应用题,加法应用题,求剩余、求另一个加数的应用题。二册求一个数比另一个数多(少)几的应用题。提问题、填条件(加、减法)。求比一个数多(少)几的数的应用题。连续两问的应用题。乘法一步应用题。提问题(乘法)。二年级三册除法一步应用题。求一个数是另一个数的几倍。求一个数的几倍是多加减复合(乘加、乘减)两步应用题。连减的两步应用题。加除、减除的两步应用少的应用题。提问题、填条件(除法)。乘法和除法一步应用题的整理。有余数的除法应用题。题。四册反叙的求比一个数多(少)几的数的应用题。已知一个数的几倍是多少求这个数的应用题。含有三个已知条件的两步应用题。含有两个已知条件的两步应用题。*含有两个已知条件的两步应用题(已知两数和与其中一数,求两数相差多少或倍数关系)。三年级五册乘法应用题和常见的数量关系。除法应用题和常见的数量关系。(实际上是同一种数量关系。)连乘应用题。连除应用题。归一应用题。归总应用题。六册用列含有未知数x的等式解答加减一步应用题。用列含有未知数x的等式解答乘除一步应用题。连乘应用题(未知量随着两个量的变化而变化)。连除应用题(总量随着两个变量的变化而变化)。简单的三步应用题。三步应用题(两步应用题加一个条件)。四年级七册一般的三步应用题(总结解答应用题的一般步骤和方法)。归一、归总加条件的三步应用题。有关计划与实际比较的三步应用题。行程问题(三步)。*四步应用题。八册列方程解比较容易的应用题(两步需要逆思考的)。列方程解稍复杂的应用题(两步需要逆思考的)。列方程解三步应用题(相遇问题)。列方程解含有两个未知数的应用题。用方程和算术方法解应用题的比较。五年级九册分数乘法应用题。分数除法应用题。分数乘、除法应用题的对比。连乘的分数乘法应用题。连除的分数除法应用题。乘除复合的分数应用题。一般的分数、小数应用题。稍复杂的求一个数的几分之几是多少的应用题。稍复杂的已知一个数的几分之分是多少求这个数的应用题。稍复杂的分数乘法和除法应用题的对比。工程问题。十册求一个数是另一个数的百分之几的应用题。稍复杂的求一个数是另一个数的百分之几的应用题。稍复杂的已知一个数的百分之几是多少求这个数的应用题。比例尺稍复杂的比例应用题。用比例解应用题。教学实践表明,这样的编排结构基本符合把数学的逻辑顺序与儿童的心理发展顺序相结合的原则,易教易学,减轻了学生学习的难度,有利于提高教学质量,培养学生的能力。但是,教学实践中,也反映出这一编排结构的一些问题。主要是有些册应用题的难度和份量偏大,例如,反叙的一步应用题需要学生进行逆思考,低年级进行教学比较困难。其次,二、三步应用题的变化条件教学有困难。在学生刚刚理解某一种应用题的数量关系和解法后,就立刻让学生变化例题中的某一条件,使之成为一道新的应用题,教学难度较大。相应的练习也有难度。2.结构特点及理论依据上述应用题的编排结构具有如下特点。(1)加强应用题的内在联系及应用题与其他知识的联系这种编排结构加强了应用题之间的内在联系及应用题与其他知识间的联系,使整个应用题部分层次分明、系统性强,既相对独立又能与其他有关知识很好地联系在一起。唯物辩证法认为,物质世界是由无数互相联系、互相依赖、互相制约、互相作用的事物所形成的统一整体。数学是现实世界数量关系和空间形式的反映,因此,数学中的各部分知识也是相互联系着的。应用题作为小学数学的一部分,它的数量关系是有内在联系的,应用题与其他知识的联系也是非常紧密的。因此,在编排应用题时,既要加强应用题的纵向联系,也要加强应用题本身及与其他知识间的横向联系。应用题之间有着密切的联系。一般地说,复合应用题是由几个简单应用题组合而成的;根据学生的心理特点、应用题的难易程度,教学应从一步应用题扩展到两步应用题,再从两步应用题扩展到三步应用题。复合应用题与简单应用题相比,不仅已知条件增多了,而且数量关系也复杂了。学生掌握了简单应用题、复合应用题的解答方法以及简单应用题与复合应用题之间的联系和区别,又较容易地掌握更多步数的应用题的解法,不但可以加深对应用题结构的理解,而且通过知识的迁移,培养学生思维的灵活性及创造
本文标题:小学数学应用题的研究(一)
链接地址:https://www.777doc.com/doc-2505080 .html