您好,欢迎访问三七文档
1.墨卡托(Mercator)投影1.1墨卡托投影简介墨卡托(Mercator)投影,是一种等角正切圆柱投影”,荷兰地图学家墨卡托(GerhardusMercator1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。“海底地形图编绘规范”(GB/T17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。1.2墨卡托投影坐标系墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。2.高斯-克吕格(Gauss-Kruger)投影2.1高斯-克吕格投影性质高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(CarlFriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(JohannesKruger,1857~1928)于1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,能在图上进行精确的量测计算。2.2高斯-克吕格投影分带按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第1、2…60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第1、2…120带。我国的经度范围西起73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二个。六度带可用于中小比例尺(如1:250000)测图,三度带可用于大比例尺(如1:10000)测图,城建坐标多采用三度带的高斯投影。2.3高斯-克吕格投影坐标高斯-克吕格投影是按分带方法各自进行投影,故各带坐标成独立系统。以中央经线投影为纵轴(x),赤道投影为横轴(y),两轴交点即为各带的坐标原点。纵坐标以赤道为零起算,赤道以北为正,以南为负。我国位于北半球,纵坐标均为正值。横坐标如以中央经线为零起算,中央经线以东为正,以西为负,横坐标出现负值,使用不便,故规定将坐标纵轴西移500公里当作起始轴,凡是带内的横坐标值均加500公里。由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,在横轴坐标前加上带号,如(4231898m,21655933m),其中21即为带号。3UTM(UniversalTransverseMercator)投影3.1UTM投影简介某些国外的软件如ARC/INFO或国外仪器的配套软件如多波束的数据处理软件等,往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影坐标当作高斯-克吕格投影坐标提交的现象。UTM投影全称为“通用横轴墨卡托投影”,是等角横轴割圆柱投影(高斯-克吕格为等角横轴切圆柱投影),椭圆割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996。UTM投影是为了全球战争需要创建的,美国于1948年完成这种通用投影系统的计算。与高斯-克吕格投影相似,该投影角度没有变形,中央经线为直线,且为投影的对称轴,中央经线的比例因子取0.9996是为了保证离中央经线左右约330km处有两条不失真的标准经线。UTM投影分带方法与高斯-克吕格投影相似,是自西经180°起每隔经差6度自西向东分带,将地球划分为60个投影带。我国的卫星影像资料常采用UTM投影。3.2高斯-克吕格投影与UTM投影异同高斯-克吕格(Gauss-Kruger)投影与UTM投影(UniversalTransverseMercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1,UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用X[UTM]=0.9996*X[高斯],Y[UTM]=0.9996*Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。UTM投影与高斯投影的主要区别在南北格网线的比例系数上,高斯-克吕格投影的中央经线投影后保持长度不变,即比例系数为1,而UTM投影的比例系数为0.9996。UTM投影沿每一条南北格网线比例系数为常数,在东西方向则为变数,中心格网线的比例系数为0.9996,在南北纵行最宽部分的边缘上距离中心点大约363公里,比例系数为1.00158。3.3高斯-克吕格投影与UTM投影坐标系高斯-克吕格投影与UTM投影是按分带方法各自进行投影,故各带坐标成独立系统。以中央经线(L0)投影为纵轴X,赤道投影为横轴Y,两轴交点即为各带的坐标原点。为了避免横坐标出现负值,高斯-克吕格投影与UTM北半球投影中规定将坐标纵轴西移500公里当作起始轴,而UTM南半球投影除了将纵轴西移500公里外,横轴南移10000公里。由于高斯-克吕格投影与UTM投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,通常在横轴坐标前加上带号,如(4231898m,21655933m),其中21即为带号。3.4高斯-克吕格投影与UTM投影坐标系的转换高斯-克吕格投影与UTM投影可近似采用Xutm=0.9996*X高斯,Yutm=0.9996*Y高斯进行坐标转换。注:在计算时Y值要去掉带号和西移的500公里,转换后再加上。3.5分带方法3.5.1我国采用的分带方法1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,用1,2,3,4,5,……表示.即东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度。1∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,……表示,全球共划分120个投影带,即东经1.5~4.5度为第1带,其中央经线的经度为东经3度,东经4.5~7.5度为第2带,其中央经线的经度为东经6度.我省位于东经113度-东经120度之间,跨第38、39、40共计3个带,其中东经115.5度以西为第38带,其中央经线为东经114度;东经115.5~118.5度为39带,其中央经线为东经117度;东经118.5度以东到山海关为40带,其中央经线为东经120度。地形图上公里网横坐标前2位就是带号,例如:1∶5万地形图上的横坐标为20345486,其中20即为带号,345486为横坐标值。3.5.2中央子午线与带号的计算6度带中央子午线的计算:6度带中央子午线=6*带号-36度带带号的计算:6度带带号=(中央子午线+3)/6例如:地形图上的横坐标为19783km其所处的六度带的中央经线经度为:6*19-3=111度(适用于1:2.5万和1:5万地形图)。111度中央子午线的6度带带号为:(111+3)/6=193度带中央经线经度的计算:3度带中央子午线=3*带号3度带带号的计算:3度带带号=(中央子午线)/3例如:地形图上的横坐标为38505000m其所处的六度带的中央经线经度为:3*38=114度(适用于1∶1万地形图)。114度中央子午线的3度带带号为:(114)/3=383.5.3根据当地经度求中央子午线及带号公式No3=Trunc((L+1.5)/3),Lo3=3*No3No6=Trunc(L/6)+1,Lo6=6*No6-3上述公式适用于电算。其中No3为3度带带号,其中No6为6度带带号,L为当地经度,Trunc为取整数部分函数。4.兰伯特等角圆锥投影兰伯特等角圆锥投影也称兰勃脱正形圆锥投影,该投影的微分圆投影后仍为圆形。经线为辐射直线,纬线为同心圆圆弧。指定两条标准纬度线Q1,Q2,在这两条纬度线上没有长度变形,即M=N=1。此种投影也叫等角割圆锥投影,可用来编制中,小比例尺地图。等角圆锥投影有广泛的应用,特别适宜于作为中纬度处沿纬度线伸展的制图区域之投影,投影后经线为辐射直线,纬度线为同心圆圆弧。我国的分省图,即为两条标准纬度线为Q1=25度,Q2=45度的兰伯特等角圆锥投影。1962年以后,百万分一地图采用了等角圆锥投影(南纬度80度,北纬度84度),极区附近,采用等角方位投影(极球面投影)。地图分幅为:纬度60以下,纬度差4经差6度分幅纬度60-76,纬度差4经差12度分幅纬度76-84,纬度差4经差24度分幅纬度84-88,纬度差4经差36度分幅88-90仍为一幅图每幅图内两条标准纬线的纬度:Q1=QS+40分(南纬度)Q2=QN-40分(北纬度)投影后经线
本文标题:坐标系说明
链接地址:https://www.777doc.com/doc-2526986 .html