您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2015数学八年级二次根式练习题
实用文档文案大全2015数学八年级二次根式练习题知识点一:二次根式的概念【知识要点】:二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】【例1】下列各式:1)22211,2)5,3)2,4)4,5)(),6)1,7)2153xaaa,其中是二次根式的是_________(填序号).举一反三:1、下列各式中,一定是二次根式的是()A、aB、10C、1aD、21a2、在a、2ab、1x、21x、3中是二次根式的个数有______个【例2】若式子13x有意义,则x的取值范围是.[来源:学*科*网Z*X*X*K]举一反三:1、使代数式43xx有意义的x的取值范围是()A、x3B、x≥3C、x4D、x≥3且x≠42、使代数式221xx有意义的x的取值范围是3、如果代数式mnm1有意义,那么,直角坐标系中点P(m,n)的位置在()A、第一象限B、第二象限C、第三象限D、第四象限【例3】若y=5x+x5+2009,则x+y=举一反三:1、若11xx2()xy,则x-y的值为()A.-1B.1C.2D.32、若x、y都是实数,且y=4x233x2,求xy的值3、当a取什么值时,代数式211a取值最小,并求出这个最小值。实用文档文案大全【例4】已知a是5整数部分,b是5的小数部分,求12ab的值。举一反三:若3的整数部分是a,小数部分是b,则ba3。若17的整数部分为x,小数部分为y,求yx12的值.知识点二:二次根式的性质【知识要点】1.非负性:aa()0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.()()aaa20.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:aaa()()203.aaaaaa200||()()注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4.公式aaaaaa200||()()与()()aaa20的区别与联系(1)a2表示求一个数的平方的算术根,a的范围是一切实数.(2)()a2表示一个数的算术平方根的平方,a的范围是非负数.(3)a2和()a2的运算结果都是非负的.【典型例题】【例4】若22340abc,则cba.举一反三:1、若0)1(32nm,则mn的值为。2、已知yx,为实数,且02312yx,则yx的值为()A.3B.–3C.1D.–13、已知直角三角形两边x、y的长满足|x2-4|+652yy=0,则第三边长为______.实用文档文案大全4、若1ab与24ab互为相反数,则2005_____________ab。【例5】化简:21(3)aa的结果为()A、4—2aB、0C、2a—4D、4举一反三:1.在实数范围内分解因式:23x=;4244mm=429__________,222__________xxx2.化简:33133.已知直角三角形的两直角边分别为2和5,则斜边长为【例6】已知2x,则化简244xx的结果是A、2xB、2xC、2xD、2x举一反三:1、根式2(3)的值是()A.-3B.3或-3C.3D.92、已知a0,那么│2a-2a│可化简为()A.-aB.aC.-3aD.3a3、若23a,则2223aa等于()A.52aB.12aC.25aD.21a4、若a-3<0,则化简aaa4962的结果是()(A)-1(B)1(C)2a-7(D)7-2a5、化简2244123xxx得()(A)2(B)44x(C)-2(D)44x6、当a<l且a≠0时,化简aaaa2212=.7、已知0a,化简求值:22114()4()aaaaoba实用文档文案大全【例7】如果表示a,b两个实数的点在数轴上的位置如图所示,那么化简│a-b│+2()ab的结果等于()A.-2bB.2bC.-2aD.2a举一反三:实数a在数轴上的位置如图所示:化简:021(2)______aa.【例8】化简21816xxx的结果是2x-5,则x的取值范围是()(A)x为任意实数(B)1≤x≤4(C)x≥1(D)x≤1举一反三:若代数式22(2)(4)aa的值是常数2,则a的取值范围是()A.4a≥B.2a≤C.24a≤≤D.2a或4a【例9】如果11a2aa2,那么a的取值范围是()A.a=0B.a=1C.a=0或a=1D.a≤1举一反三:1、如果2693aaa成立,那么实数a的取值范围是().0.3;.3;.3AaBaCaDa2、若03)3(2xx,则x的取值范围是()(A)3x(B)3x(C)3x(D)3x【例10】化简二次根式22aaa的结果是(A)2a(B)2a(C)2a(D)2a1、把二次根式aa1化简,正确的结果是()A.aB.aC.aD.a2、把根号外的因式移到根号内:当b>0时,xxb=;aa11)1(=。知识点三:最简二次根式和同类二次根式【知识要点】1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;分母中不含根号.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。112a实用文档文案大全【典型例题】【例11】在根式1)222;2);3);4)275xabxxyabc,最简二次根式是()A.1)2)B.3)4)C.1)3)D.1)4)举一反三:1、)ba(17,54,b40,212,30,a45222中的最简二次根式是。2、下列根式中,不是..最简二次根式的是()A.7B.3C.12D.23、下列根式不是最简二次根式的是()A.21aB.21xC.24bD.0.1y4、下列各式中哪些是最简二次根式,哪些不是?为什么?(1)ba23(2)23ab(3)22yx(4))(baba(5)5(6)xy85、把下列各式化为最简二次根式:(1)12(2)ba245(3)xyx2【例12】下列根式中能与3是合并的是()A.8B.27C.25D.21举一反三:1、下列各组根式中,是可以合并的根式是()A、318和B、133和C、22abab和D、11aa和2、在二次根式:①12;②32;③32;④27中,能与3合并的二次根式是。3、如果最简二次根式83a与a217能够合并为一个二次根式,则a=__________.知识点四:二次根式计算——分母有理化【知识要点】1.分母有理化定义:把分母中的根号化去,叫做分母有理化。实用文档文案大全2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。有理化因式确定方法如下:①单项二次根式:利用aaa来确定,如:aa与,abab与,ba与ba等分别互为有理化因式。②两项二次根式:利用平方差公式来确定。如ab与ab,abab与,axbyaxby与分别互为有理化因式。3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。【典型例题】【例13】把下列各式分母有理化(1)148(2)4337(3)11212(4)13550【例14】把下列各式分母有理化:(1)221(2)5353(3)333223举一反三:1、已知2323x,2323y,求下列各式的值:(1)xyxy(2)223xxyy小结:一般常见的互为有理化因式有如下几类:①与;②与;③与;④与.知识点五:二次根式计算——二次根式的乘除【知识要点】1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。ab=a·b(a≥0,b≥0)2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。a·b=ab.(a≥0,b≥0)3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根实用文档文案大全ab=ab(a≥0,b0)4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。ab=ab(a≥0,b0)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.【典型例题】【例15】化简(1)916(2)1681(3)1525(4)229xy(0,0yx)(5)12×632【例16】计算(1)【例17】化简:(1)364(2)22649ba)0,0(ba(3)2964xy)0,0(yx(4)25169xy)0,0(yx【例18】计算:(1)123(2)3128(3)11416(4)648【例19】能使等式22xxxx成立的的x的取值范围是()A、2xB、0xC、02xD、无解知识点六:二次根式计算——二次根式的加减【知识要点】需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并.但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数.【典型例题】【例20】计算(1)11327520.53227;(2)12543102024553457;实用文档文案大全(3)11113275348532;(4)113326327284814723247知识点七:二次根式计算——二次根式的混合计算与求值【知识要点】1、确定运算顺序;2、灵活运用运算定律;3、正确使用乘法公式;4、大多数分母有理化要及时;5、在有些简便运算中也许可以约分,不要盲目有理化;【典型习题】【例21】1、22(212+418-348)2、673)32272(知识点八:根式比较大小【知识要点】1、根式变形法当0,0ab时,①如果ab,则ab;②如果ab,则ab。2、平方法当0,0ab时,①如果22ab,则ab;②如果22ab,则ab。3、分母有理化法通过分母有理化,利用分子的大小来比较。4、分子有理化法通过分子有理化,利用分母的大小来比较。5、倒数法6、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。7、作差比较法在对两数比较大小时,经常运用如下性质:①0abab;②0abab8、求商比较法它运用如下性质:当a0,b0时,则:①1aabb;②1aabb【典型例题】【例22】比较35与53的大小。例23】比较231与121的大小。【例24】比较1514与1413的大小。【例25】比较76与65的大小。实用文档文案大全【例26】比较73与873的大小二次根式练习题一、选择题1.下列式子一定是二次根式的是()A.2xB.xC.22xD.22x2.若13m有意义,则m能取的最小整数值是()A.m=0B.m=1C.m=2D.m=33.若x0,则xxx2的结果是()A.0B.—2C.0或—2D.24.下列说法错误的是()A.962aa是最简二次根式B.4是二次根式C.22ba是一个非负数D.162x的最小值是45.
本文标题:2015数学八年级二次根式练习题
链接地址:https://www.777doc.com/doc-2528214 .html