您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 复变函数(第四版)课后习题答案
习题一解答1.求下列复数的实部与虚部、共轭复数、模与辐角。(3)34i25i;(4)i84i21i132i13i1i(1);(2);i2i32i32i32i132i132i13解(1)所以132i,Im21Re,1332i22132i1132i331332i,,13131313Arg132iarg132i2kπ2arctan2k,k0,1,2,313ii3i1ii133i35(2)1iii1i(1i)i,i222所以13i3,Rei1i213i5Imi1i22213ii5,313i1i34,35i1i13i22i22213i2kπArgargi1ii1iarctan52kπk012.3(3)34i25i34i25i2i267i2i2i2i2i4726i713i22所以34i25iRe7,2i234i25iIm13,2i134i25i7l3i22i34i25i529,2i234i25i2i34i25i26π2kπArgarg2kπ2arctan7k0,1,2,.2iarctan2672k1,(4)i44i10ii144110ii8224i21ii14ii13i所以Rei84i21i1,Imi84ii213i13i,|i84i21i|1084i21iArgi84i21iargi84i21i2kπarg13i2kπ=arctan32kπk0,1,2,.x1iy31i成立,试求实数x,y为何值。2.如果等式解:由于53ix1iy3x1iy353i53i53i53i5x13y3i3x15y33415x3y4i3x5y181i34比较等式两端的实、虚部,得5x3y4345x3y383x5y1834或3x5y52解得x1,y11。i3.证明虚单位i有这样的性质:-i=i-1=。4.证明1)|z|zz2#6)Re(z)1(zz),Im(z)1(zz)22i2证明:可设zxiy,然后代入逐项验证。|z|5.对任何z,z22是否成立?如果是,就给出证明。如果不是,对那些z值才成立?解:设zxiy,则要使z2|z|2成立有yxy,xy0。由此可得z为实数。22x2y22ixyx2y2,即x226.当|z|1时,求|zna|的最大值,其中n为正整数,a为复数。iarga|a|1|a|,且当ze时,有n解:由于zna|z|nniarga|a|eiarga1aeiarga1|a|zna|en故1|a|为所求。8.将下列复数化成三角表示式和指数表示式。(1)i;(2)-1;(3)1+3i;cos5isin522i(4)1cosisin0π;(5);(6)cos3isin31i3iπ解:(1)icosπisinπe;222(2)1cosπisinπeiππi132cosπisin2e3π3(3)1i322i;232i2sincos2sin2sinicos2(4)1cosisin2sin22isinπ1222sincos2π2sin2e,(0π);iπ2222i1i12i1i1i2i1(5)2222cosπisinπ44iπ=2e4cos5isin5cos3isin323ei523ei10/ei9ei19i3/e(6)3
本文标题:复变函数(第四版)课后习题答案
链接地址:https://www.777doc.com/doc-2546116 .html