您好,欢迎访问三七文档
奥钢联连铸技术手册1、连铸1.1概述1.2基本理论和计算1.2.1计算和设计公式1.2.1.1坯壳厚度及液芯长度1.2.1.2拉速1.2.1.3振动1.2.1.4温度1.2.1.5结晶器的散热1.2.1.6二次冷却1.2.1.7热坯长度的确定1.2.1.8收缩1.2电磁搅拌1.2.1结晶器电磁搅拌1.2.2末端电磁搅拌1.3安全1.3.1不能开浇(!!)1.3.2禁止连续浇注1.3.3中包停浇1.3.4怎样区分钢水和钢渣1.4中包包衬1.4.1可应用的工作层1.4.2中包和侵入式水口的预热1.4.3塞棒浇注的中包预热1.5拉浇前设备的前提准备1.5.1结晶器的准备1.5.2引锭杆的准备1.5.3送引锭1.5.4封引锭1.5.5推荐使用的封引锭方式(1802)1.5.6开浇前大包中包的操作步骤1.6开浇1.6.1开浇的前提条件1.6.2火切机控制板1.6.3大包开浇1.6.4大包长水口的操作1.6.5塞棒浇注的手动开浇1.6.6自动开浇1.7连铸工艺1.7.1更换大包1.7.2快换中间包1.8停浇1.9质量控制/质量保证1.9.1间接检验方法1.9.2直接检验方法1.9.3表面检验1.9.4内部缺陷检验1.9.5取样和检验1.9.6中包前取样1.9.7中包测温1.9.8中包取样1.9.9铸坯取样1.9.10冶金缺陷-铸坯缺陷-原因/纠正方法1.9.11表面缺陷1.9.12内部缺陷1、连铸1.1概述钢水由液态转变为固态是在连铸进行的,其产品被称为小方坯、大方坯或板坯精炼后,吊车将大包吊在大包旋转台的支撑臂上,盖上大包盖,将大包放在大包回转台上后,将其旋转至浇注位。预热好的中间包车(大于1000度)从预热位开至浇住位,将预热好的侵入式水口与结晶器对中并插入。同时使用长水口操作机构将通有氩气保护的大包长水口靠近大包滑动机构,之后,打开大包滑动水口,钢水从大包注入至中间包,中包填液时间即从大包开浇至打开塞棒的时间不应超过2分钟。中间包向结晶器注入钢水是通过安装在中间包内的塞棒来控制的,中间包支持在中间包车上。开浇前,先起动结晶器振动台和液位控制系统。人工加保护渣,结晶器安装于平台上,通过振动机构完成上下运动。安装在结晶器末端的足辊对刚出结晶器的热坯导向作用。足辊后的导向辊是固定的,将铸坯导入固定半径的弧线中。置于弧形末端的拉矫机将铸坯由恒定半径的弧形矫直为水平。挤压辊安装于拉矫机下方,以支撑、拉戈引锭杠和铸坯,汽水喷淋用来冷却铸坯及调节冷却强度。喷淋室在铸坯铸坯导向周围与之成为一体,在喷淋室形成的蒸汽由排蒸汽机抽到空气中。在不需要引锭杠导向时,由脱引锭辊将引锭脱开,并送自引锭杆辊道上。其上装有引锭杆存放装置,将引锭杆从开浇后至下次开浇前,存放于其上。铸坯由火切机切成定尺。在辊道末端装有可移动档板,将铸坯停下。拉浇结束时,低速拉尾坯,高速矫直。尾坯由尾坯处理装置切尾送走。当最后一支坯移至输出辊道,引锭杆由存放引锭杆装置落至辊道上,送入铸坯导向辊至结晶器下方将引锭头对中送入结晶器。封引锭杆准备下一浇次。1.2基本原理和计算1.2.1计算和设计公式1.2.1.1坯壳厚度及液芯长度液芯长度由坯壳成长常数和凝固时间所决定的,此常数可看作一个数值,在凝固区增大。坯壳凝固厚度“S”的计算公式如下:S=K*/t固态坯壳S(mm)凝固常数K(mm/min1/2)凝固时间=L/VCt(min)凝固长度Vc(m/min)拉速现在铸坯任一点的坯壳厚度都可计算。凝固常数是由拉浇的钢种所决定的,以确定冶金长度,数值如下:K=27mm/min1/2K=26mm/min1/21.2.1.2拉速最大拉速由冶金长度(从结晶器液位至铸坯凝固的连铸长度)计算公式如下:VCMAX=LM/tsolidD/2=K*/tsolidTsolid=(D/2K)2VCMAX=Lm*(k/s)2=LM*(2*K/D)2其中:K(mm/min1/2)——凝固系数Vcmax*(m/min)-----最大拉速D(mm)——————热坯厚度Lm(M)——————液芯长度,也称“冶金长度”Tsolid(min)————铸坯全部凝固的时间不能超过最大可用拉速(由冶金长度估算出的);否则铸坯内的液芯长度会超出铸坯支撑长度而导致鼓肚。举例:Lm=27mK=26mm/min1/2D=220mmVCMAX=27*(2*26*220)2=1.51m/min在实际生产中,根据要求的拉速时间、化学成分、铸坯性能及中间包温度采用比较低的拉速。1.2.1.3振动振动的速度,频率乃至振幅对铸件的表面性能及外形有着重要的影响。避免坯壳粘在结晶器壁上,振动装置是密不可少的。振动参数(振幅、频率、负滑脱)影响着振痕的深度、间距、保护渣的消耗及坯壳的成长。振动的平均速度,公式如下:Vo=2*h*fh(m)——振幅f(min-1)——频率Vo(m/min)——平均振动速度振动速度理论上应比拉速高30~40%,即:Vo=1.3to1.4*Vc1.2.1.4温度拉浇温度对凝固过程有着相当大的影响,因此其对铸坯质量有着紧密的关系,过高的拉浇温度导致铸坯质量差(中心疏松、晶粒组织粗大、大量的树枝晶、应力裂纹等)且增加漏钢的危险,过热度应为10~35度之间。过热度增高会导致铸坯厚度变薄,这样由于坯壳很薄,拉应力增大,大大增加了粘壳的危险,而导致漏钢的危险增加。过热度超过45~60度(不同钢种而不同),必须停止拉浇。过低的过热度会使钢水在侵入式水口中结死,大包钢水的温度应根据工艺要求在二次冶炼中确定下来。不当的过热度对铸坯质量的影响;*过热度过高--纵向裂纹--深度的中间裂纹和中心分层--极重的偏析*过热度过低--水口结死下面是对应生产顺序的相关温度:大包温度(Tl),为开浇前在大包内的钢水温度。中包温度(Tt),为中包内钢水温度。液相线温度(Tlid),为分钢种开始凝固的温度。计算液相线温度的公式:°C(液相线)=1.5366-X%C-Y%合金%CX=0.025900.026-0.05820.06-0.10860.11-0.5088.40.51-0.6086.10.61-0.7084.20.71-0.8083.20.81-1.0082.3合金元素含量范围%YSi0-38Mn0-1.55P0-0.730S0-0.0825Cr0-181.5Ni0-94Cu0-0.35Mo0-0.32V0-12W-18%at0.66%C1As0-0.514Sn0-0.0310O*0-0.0380N*0-0.0390H*0-?1.300Ti17Al5,1Co1,7*=预估的1.2.1.5结晶器散热从结晶器带走热量的过程及热传导形式,描述如下:*凝固的坯壳间钢水的对流.*通过坯壳的热传导.*坯壳与铜板/铜管表面(保护渣\气隙)的接触.*结晶器铜板/铜管的热传导.*通过结晶器铜板/铜管与水套间冷却水的对流.最重要的温降发生在结晶器铜板/铜管与坯壳的热传导,见图1:结晶器冷却的几个重要参数:*拉速:拉速增快,铸坯与铜板/铜管,接触的长度增加.*保护渣:熔化的保护渣填充在铜板/铜管与坯壳之间,有助于散热.*结晶器的几何尺寸:改变结晶器倒锥度提高散热强度.*结晶器冷却:通常为避免形成气泡,结晶器冷却水必须达到一定流量,水的粘度比水更重要,计算水的流量及压力参见连铸机供应商提供的操作手册.1.2.1.6二冷水二冷水的冷却强度由连铸机内铸坯的表面温度,拉浇的钢种及拉速决定的,二冷区所有的凝固常数在K=26mm/min1/2-28mm/min1/2之间,取决于钢种及二冷水量,为了得到满意的浇注组织,几个冷却水段的冷却水量是单独调节的。气雾冷却由于铸坯的冶金冷却,使用这种形式的喷嘴可得到较宽范围的水量调节,但必须达到下面的平衡:铸坯不能过冷(避免表面缺陷),设备不能过热(以避免辊子及轴承的损坏)。对流量,压力及喷嘴型式的要求,参加连铸机供应商提供的操作手册。1.2.1.6热坯长度的确定计算热坯长度的公式如下:Lhot=Lcold*X+SLhot(mm)----热坯长度,其值应在长度测量装置上调节Lcold(mm)----冷却后的铸坯长度(约+20℃)S(mm)------切缝宽度(因火切机及质量的不同而不同)X(1)-------收缩因子,考虑铸坯从切割机至冷坯的收缩值,是铸坯在切割辊上温度的函数及铸件成分的函数.铸坯在切割辊道上的平均温度(整个断面的平均温度)约在900℃,冷坯是在+20℃的室温上测的.计算热坯长度,必须知道收拾因子,收缩因子为一常量X=1.013.用于所生产的铸坯.如生产钢种扩大到合金钢,收缩因子可随之修改.C钢:X=1.013举例:铸坯长度=8000mm(冷坯)质量:St37---收缩率=1.013Lhot=Lcold*X+切缝---=8000mm*1.013+8mmLhot=8112mm1.2.1.8收缩1.2.1.8.1概述连铸在固相线温度下的热收缩对质量有特别的影响,一些铸坯表面的缺陷及生产中遇到的一些现象都是由于不同的C含量的钢种其收缩特性不同引起的.C含量为0.09%~0.16%的钢种(包晶范围)对表面及内部裂纹表面粗糙、扭曲变形、拉漏比C含量低于或高于这个范围的钢种更为敏感。研究表明0.09%~0.16%的钢种通过结晶器的热流量最小,且结晶器与坯壳之间的摩擦力也较低。以上观察到的现象归因于包晶反应而引起铸坯收缩量增大及机械应力提高。δ/γ相变在固相线温度以下恒定的温度区间内,铁碳合金的收缩量是C含量的函数。C含量的0.09%~0.16%的热收缩量增加,相应的体积缩小(密度增大)是与δ/γ相变相关联的。δ/γ相变只发生在铸坯上特定的一段,由于收缩不均匀,以及钢水静压力引起的除热应变外的弹性应变、粘弹性应变、使机械应力增强。在连铸生产中,收缩及应力的成长都是由于拉浇过程中各种因素复杂的相互作用(温度梯度、坯壳成长速度)以及钢的材质特性的结果。就VOEST-ALPINESTAHL产品,经验表面:收缩率取1.013满足计算的要求,分析表明收缩率对其影响微小.1.3电磁搅拌1.3.1结晶器电磁搅拌M-EMS(结晶器电磁搅拌)对铸件的内部和表面质量有着积极的作用,由于能量消耗较高(约3Kwh/t),EMS主要在浇注高品质的特钢中使用.特殊情况:包晶钢!(C含量为0.09~0.16%)经验表明,调节M-EMS的参数(主要是电流),可提高生产和冶炼的效果.M-EMS放于结晶器装配下放更适合于使用保护渣和侵入式水口的形式.使用建议的M-EMS参数设置时,特别观察弯月面的情况,以确保弯月面的情况,以确保弯月面无大的搅动.如弯月面波动过大过侵入式水口侵蚀,必须逐渐减少电流,(如25A)直到满意为止.结晶器断面超过200mm2及结晶器壁20mm的情况,建议选用2~2.5Hz的频率.如结晶器断面小于200mm2及结晶器壁15mm的情况,建议选用4Hz的频率.为了方便操作,如果最大电流为400A,或接近400A(390A),也可选用固定的频率4.0Hz,注:范围由C含量来确定)!分钢种设置M-EMS参数,举例:表1所示根据C含量的不同而设置的电流:M-EMS的频率应调节到2~4.5HZ之间(根据不同的断面尺寸,如小断面高频率,大断面低频率).表1C含量M-EMS(A)0.251500.26~0.45250-4000.46~0.60350~4000.60400注意:为了避免注流钢水时卷渣,侵入式水口必须保证最小插入深度(如建议插入深度80~140mm).1.3.2末端电磁搅拌使用末端电磁搅拌只对高碳钢或Mn\Cr含量高(1%)的钢种有意义.注:为使末端电磁搅拌达到最优效果,末端电磁搅拌中心应置于铸坯内液芯50mm处!如出现”白亮带”,强度通过下面方法可控制:*增加M-EMS的电流.*减少F-EMS的电流.*调节反转周期见表3===特别是用于低C钢.*降低拉速(也就是缩短液芯长度).表2所示F-EMS电流与C含量的函数关系.F-EMS的频率应调节至17.0~20.0Hz之间.C含量(%)F-EMS频率(A)0.25-0.26~0.452500.46~
本文标题:奥钢联技术手册
链接地址:https://www.777doc.com/doc-2557050 .html