您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 二次函数实际应用例题
二次函数的应用二次函数是反映现实世界中变量间的数量关系和变化规律的常见的数学模型.将实际问题中的变量关系转化成二次函数后,就可以利用二次函数的图象和性质加以解决,其关键是从实际问题中抽象出数学模型.一、以现实的生活为背景,通过对投掷、跳水、跳远、拱桥、隧道等“抛物线”的探究,建立合理的平面直角坐标系,利用待定系数确定二次函数的表达式例1如图1,三孔桥截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小孔顶点N距水面4.5米(NC=4.5米).当水位上涨刚好淹没小孔时,借助图2中的直角坐标系,求此时大孔的水面宽度EF.分析:如图2,由这个实际问题抽象出的数学模型题目已经给出,观察图象可知抛物线的对称轴为y轴,顶点为(0,6),故可设函数关系式为y=ax2+6.又因为AB=20,所以OB=10,故B(10,0)又在抛物线上,可代入求值.解:设抛物线所对应的函数关系式为y=ax2+6.依题意,得B(10,0).所以a×102+6=0.解得a=-0.06.即y=-0.06x2+6.当y=4.5时,-0.06x2+6=4.5,解得x=±5.所以DF=5,EF=10.即水面宽度为10米.例2如图3所示,一位运动员在距篮圈中心水平距离4米处跳起投篮,球运行的路线是抛物线,当球运动的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05米.求抛物线的关系式.分析:函数图象的对称轴为y轴,故设篮球运行的路线所对应的函数关系式为y=ax2+k(a≠0,k≠0).解:设函数关系式为y=ax2+k(a≠0),由题意可知,A、B两点坐标为(1.5,3.05),(0,3.5).则1.52a+k=3.05,k=3.5.解得a=-0.2,所以抛物线对应的函数关系式为y=-0.2x2+3.5.二、在几何图形中,利用图形的面积、相似三角形等有关知识获得y与x的关系式例3如图4,在矩形ABCD中,AD=12,AB=8,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.(1)设CP=x,BE=y,试写出y关于x的函数关系式.(2)当点P在什么位置时,线段BE最长?析解:在几何图形中,求函数关系式时,通常把两个变量放入两个图形,利用两个图形相似,或者在一个图形中利用面积建立它们之间的数量关系.本题要求y与x之间的关系式,通过观察可以发现y、x分别是△BPE、△CDP的边,而且由∠EPB+∠DPC=90°,∠DPC+∠PDC=90°,可得∠EPB=∠PDC,又由∠B=∠C=90°,容易得到△BPE∽△CDP.所以有BPBECDCP.即128xyx.故y关于x的函数关系式为21382yxx.当62bxa时,y有最大值,y最大24942acbya最大.即当点P距点C为6时,线段BE最长.例4某班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.小组讨论后,同学们设计了三种铝合金框架,图案如图5(1)、5(2)、5(3),请你根据以下图案回答下列问题:(题中的铝合金材料总长度均各指图11中所有黑线的长度和)(1)在图案(1)中,如果铝合金材料总长度为6m,当AB为1m时,长方形框架ABCD的面积是_____m2;(2)图案(2)中,如果铝合金总长度为6m,设AB为xm,长方形框架ABCD的面积为Sm2,那么S=_______(用含x的代数式表示);当AB=______m时,长方形框架ABCD的面积S最大,在图案(3)中,如果铝合金材料总长度为lm,当AB=______m时,长方形框架ABCD的面积S最大.(3)在经过这三种情况的试验后,他们发现对于图案(4)这样的情形也存在着一定的规律.探索:如图(4),如果铝合金材料长度为lm,共有n条竖档,那么当竖档AB长为多少时,长方形框架ABCD的面积S最大.分析:解此类问题通常是建立面积与线段长的函数关系式,然后利用二次函数的图象或性质求最大值(或最小值),在这类问题中常用到下列图形的面积公式:三角形、矩形、正方形、平行四边形、梯形和圆等.解:(1)43;(2)22xx,1,8l;(3)设AB长为xcm,那么AD为3lnx,2333lnxnlSxxx.当2lxn时,S最大.注:关于二次函数的实际应用,体现在生活中的方方面面,在此我们不再一一列举,关键是同学们掌握这种处理实际问题的思路,达到举一反三的效果,不管题目背景如何变化,但它万变不离其宗,只要我们有了这种方法,任何问题都可以迎刃而解.
本文标题:二次函数实际应用例题
链接地址:https://www.777doc.com/doc-2582295 .html