您好,欢迎访问三七文档
模拟电子技术双极型半导体三极管晶体三极管晶体三极管的特性曲线晶体三极管的主要参数模拟电子技术(SemiconductorTransistor)晶体三极管一、结构、符号和分类NNP发射极E基极B集电极C发射结集电结—基区—发射区—集电区emitterbasecollectorNPN型PPNEBCPNP型ECBECB模拟电子技术分类:按材料分:硅管、锗管按功率分:小功率管500mW按结构分:NPN、PNP按使用频率分:低频管、高频管大功率管1W中功率管0.51W模拟电子技术二、电流放大原理1.三极管放大的条件内部条件发射区掺杂浓度高基区薄且掺杂浓度低集电结面积大外部条件发射结正偏集电结反偏2.满足放大条件的三种电路uiuoCEBECBuiuoECBuiuo共发射极共集电极共基极模拟电子技术实现电路:模拟电子技术3.三极管内部载流子的传输过程1)发射区向基区注入多子电子,形成发射极电流IE。ICN多数向BC结方向扩散形成ICN。IE少数与空穴复合,形成IBN。IBN基区空穴来源基极电源提供(IB)集电区少子漂移(ICBO)ICBOIBIBNIB+ICBO即:IB=IBN–ICBO2)电子到达基区后(基区空穴运动因浓度低而忽略)模拟电子技术ICNIEIBNICBOIB3)集电区收集扩散过来的载流子形成集电极电流ICICIC=ICN+ICBO模拟电子技术4.三极管的电流分配关系当管子制成后,发射区载流子浓度、基区宽度、集电结面积等确定,故电流的比例关系确定,即:IB=IBNICBOIC=ICN+ICBOBNCNIICEOBCBOBC)1(IIIII穿透电流CBOBCBOCIIII模拟电子技术IE=IC+IBCEOBCIIIBCEIIIBCIIBE)1(IICEOBE)1(III模拟电子技术晶体三极管的特性曲线一、输入特性输入回路输出回路常数CE)(BEBuufi0CEu与二极管特性相似模拟电子技术BEuBiO0CEuV1CEu0CEuV1CEu特性基本重合(电流分配关系确定)特性右移(因集电结开始吸引电子)导通电压UBE(on)硅管:(0.60.8)V锗管:(0.20.3)V取0.7V取0.2V模拟电子技术二、输出特性常数B)(CECiufiiC/mAuCE/V50µA40µA30µA20µA10µAIB=0O246843211.截止区:IB0IC=ICEO0条件:两个结反偏截止区ICEO模拟电子技术iC/mAuCE/V50µA40µA30µA20µA10µAIB=0O246843212.放大区:CEOBCIII放大区截止区条件:发射结正偏集电结反偏特点:水平、等间隔ICEO模拟电子技术iC/mAuCE/V50µA40µA30µA20µA10µAIB=0O246843213.饱和区:uCEuBEuCB=uCEuBE0条件:两个结正偏特点:ICIB临界饱和时:uCE=uBE深度饱和时:0.3V(硅管)UCE(SAT)=0.1V(锗管)放大区截止区饱和区ICEO模拟电子技术三、温度对特性曲线的影响1.温度升高,输入特性曲线向左移。温度每升高1C,UBE(22.5)mV。温度每升高10C,ICBO约增大1倍。BEuBiOT2T1模拟电子技术2.温度升高,输出特性曲线向上移。iCuCET1iB=0T2iB=0iB=0温度每升高1C,(0.51)%。输出特性曲线间距增大。O模拟电子技术晶体三极管的主要参数一、电流放大系数1.共发射极电流放大系数iC/mAuCE/V50µA40µA30µA20µA10µAIB=0O24684321—直流电流放大系数BCCBOBCBOCBNCNIIIIIIII—交流电流放大系数BiiC一般为几十几百Q82A1030A1045.26380108.0A1010A10)65.145.2(63模拟电子技术iC/mAuCE/V50µA40µA30µA20µA10µAIB=0O246843212.共基极电流放大系数11BCCECIIIII1一般在0.98以上。Q988.018080二、极间反向饱和电流CB极间反向饱和电流ICBO,CE极间反向饱和电流ICEO。模拟电子技术三、极限参数1.ICM—集电极最大允许电流,超过时值明显降低。2.PCM—集电极最大允许功率损耗PC=iCuCE。iCICMU(BR)CEOuCEPCMOICEO安全工作区模拟电子技术U(BR)CBO—发射极开路时C、B极间反向击穿电压。3.U(BR)CEO—基极开路时C、E极间反向击穿电压。U(BR)EBO—集电极极开路时E、B极间反向击穿电压。U(BR)CBOU(BR)CEOU(BR)EBO模拟电子技术小结模拟电子技术一、两种半导体和两种载流子两种载流子的运动电子—自由电子空穴—价电子两种半导体N型(多电子)P型(多空穴)二、二极管1.特性—单向导电正向电阻小(理想为0),反向电阻大()。)1e(DSDTUuIi)1e(,0DSDDTUuIiu0,0SDIIu模拟电子技术iDOuDU(BR)IFURM2.主要参数正向—最大平均电流IF反向—最大反向工作电压U(BR)(超过则击穿)反向饱和电流IR(IS)(受温度影响)IS模拟电子技术3.二极管的等效模型理想模型(大信号状态采用)uDiD正偏导通电压降为零相当于理想开关闭合反偏截止电流为零相当于理想开关断开恒压降模型UD(on)正偏电压UD(on)时导通等效为恒压源UD(on)否则截止,相当于二极管支路断开UD(on)=(0.60.8)V估算时取0.7V硅管:锗管:(0.10.3)V0.2V折线近似模型相当于有内阻的恒压源UD(on)模拟电子技术4.二极管的分析方法图解法微变等效电路法5.特殊二极管工作条件主要用途稳压二极管反偏稳压发光二极管正偏发光光敏二极管反偏光电转换模拟电子技术三、两种半导体放大器件双极型半导体三极管(晶体三极管BJT)单极型半导体三极管(场效应管FET)两种载流子导电多数载流子导电晶体三极管1.形式与结构NPNPNP三区、三极、两结2.特点基极电流控制集电极电流并实现放大模拟电子技术放大条件内因:发射区载流子浓度高、基区薄、集电区面积大外因:发射结正偏、集电结反偏3.电流关系IE=IC+IBIC=IB+ICEOIE=(1+)IB+ICEOIE=IC+IBIC=IBIE=(1+)IB模拟电子技术4.特性iC/mAuCE/V100µA80µA60µA40µA20µAIB=0O369124321O0.40.8iB/AuBE/V60402080死区电压(Uth):0.5V(硅管)0.1V(锗管)工作电压(UBE(on)):0.60.8V取0.7V(硅管)0.20.3V取0.3V(锗管)饱和区截止区
本文标题:半导体三极管.
链接地址:https://www.777doc.com/doc-2589314 .html