您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 函数导数高考题汇编答案
2009年高考数学试题分类汇编——函数(答案)1.(2009浙江文)(本题满分15分)已知函数32()(1)(2)fxxaxaaxb(,)abR.(I)若函数()fx的图象过原点,且在原点处的切线斜率是3,求,ab的值;(II)若函数()fx在区间(1,1)上不单调...,求a的取值范围.解析:(Ⅰ)由题意得)2()1(23)(2aaxaxxf又3)2()0(0)0(aafbf,解得0b,3a或1aⅡ)由'()0fx,得122,3axax又()fx在(1,1)上不单调,即2311aaa或211323aaa解得1112aa或5112aa所以a的取值范围是11(5,)(,1)22.2.(2009山东卷文)(本小题满分12分)已知函数321()33fxaxbxx,其中0a(1)当ba,满足什么条件时,)(xf取得极值?(2)已知0a,且)(xf在区间(0,1]上单调递增,试用a表示出b的取值范围.解:(1)由已知得2'()21fxaxbx,令0)('xf,得2210axbx,)(xf要取得极值,方程2210axbx必须有解,所以△2440ba,即2ba,此时方程2210axbx的根为2212442bbabbaxaa,2222442bbabbaxaa,所以12'()()()fxaxxxx当0a时,x(-∞,x1)x1(x1,x2)x2(x2,+∞)f’(x)+0-0+f(x)增函数极大值减函数极小值增函数所以)(xf在x1,x2处分别取得极大值和极小值.当0a时,x(-∞,x2)x2(x2,x1)x1(x1,+∞)f’(x)-0+0-f(x)减函数极小值增函数极大值减函数所以)(xf在x1,x2处分别取得极大值和极小值.综上,当ba,满足2ba时,)(xf取得极值.(2)要使)(xf在区间(0,1]上单调递增,需使2'()210fxaxbx在(0,1]上恒成立.即1,(0,1]22axbxx恒成立,所以max1()22axbx设1()22axgxx,2221()1'()222axaagxxx,令'()0gx得1xa或1xa(舍去),当1a时,101a,当1(0,)xa时'()0gx,1()22axgxx单调增函数;当1(,1]xa时'()0gx,1()22axgxx单调减函数,所以当1xa时,()gx取得最大,最大值为1()gaa.所以ba当01a时,11a,此时'()0gx在区间(0,1]恒成立,所以1()22axgxx在区间(0,1]上单调递增,当1x时()gx最大,最大值为1(1)2ag,所以12ab综上,当1a时,ba;当01a时,12ab【命题立意】:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.3.设函数321()(1)4243fxxaxaxa,其中常数a1(Ⅰ)讨论f(x)的单调性;(Ⅱ)若当x≥0时,f(x)0恒成立,求a的取值范围。w.w.w.k.s.5.u.c.o.m解析:本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性,第一问关键是通过分析导函数,从而确定函数的单调性,第二问是利用导数及函数的最值,由恒成立条件得出不等式条件从而求出的范围。解:(I))2)(2(4)1(2)(2axxaxaxxfw.w.w.k.s.5.u.c.o.m由1a知,当2x时,0)(xf,故)(xf在区间)2,(是增函数;当ax22时,0)(xf,故)(xf在区间)2,2(a是减函数;当ax2时,0)(xf,故)(xf在区间),2(a是增函数。综上,当1a时,)(xf在区间)2,(和),2(a是增函数,在区间)2,2(a是减函数。(II)由(I)知,当0x时,)(xf在ax2或0x处取得最小值。aaaaaaaf2424)2)(1()2(31)2(23aaa2443423af24)0(由假设知w.w.w.k.s.5.u.c.o.m,0)0(,0)2(1fafa即.024,0)6)(3(34,1aaaaa解得1a6故a的取值范围是(1,6)4.(2009江西卷文)(本小题满分12分)设函数329()62fxxxxa.(1)对于任意实数x,()fxm恒成立,求m的最大值;(2)若方程()0fx有且仅有一个实根,求a的取值范围.解:(1)'2()3963(1)(2)fxxxxx,因为(,)x,'()fxm,即239(6)0xxm恒成立,所以8112(6)0m,得34m,即m的最大值为34(2)因为当1x时,'()0fx;当12x时,'()0fx;当2x时,'()0fx;所以当1x时,()fx取极大值5(1)2fa;当2x时,()fx取极小值(2)2fa;故当(2)0f或(1)0f时,方程()0fx仅有一个实根.解得2a或52a.5.(2009四川卷文)(本小题满分12分)已知函数32()22fxxbxcx的图象在与x轴交点处的切线方程是510yx。(I)求函数()fx的解析式;(II)设函数1()()3gxfxmx,若()gx的极值存在,求实数m的取值范围以及函数()gx取得极值时对应的自变量x的值.【解析】(I)由已知,切点为(2,0),故有(2)0f,即430bc……①又2()34fxxbxc,由已知(2)1285fbc得870bc……②联立①②,解得1,1bc.所以函数的解析式为32()22fxxxx…………………………………4分(II)因为321()223gxxxxmx令21()34103gxxxm当函数有极值时,则0,方程2134103xxm有实数解,w.w.w.k.s.5.u.c.o.m由4(1)0m,得1m.①当1m时,()0gx有实数23x,在23x左右两侧均有()0gx,故函数()gx无极值②当1m时,()0gx有两个实数根1211(21),(21),33xmxm(),()gxgx情况如下表:x1(,)x1x12(,)xx2x2()x()gx+0-0+()gx↗极大值↘极小值↗所以在(,1)m时,函数()gx有极值;当1(21)3xm时,()gx有极大值;当1(21)3xm时,()gx有极小值;…………………………………12分6.(2009湖南卷文)(本小题满分13分)已知函数32()fxxbxcx的导函数的图象关于直线x=2对称.(Ⅰ)求b的值;(Ⅱ)若()fx在xt处取得最小值,记此极小值为()gt,求()gt的定义域和值域。解:(Ⅰ)2()32fxxbxc.因为函数()fx的图象关于直线x=2对称,所以226b,于是6.b(Ⅱ)由(Ⅰ)知,32()6fxxxcx,22()3123(2)12fxxxcxc.(ⅰ)当c12时,()0fx,此时()fx无极值。(ii)当c12时,()0fx有两个互异实根1x,2x.不妨设1x<2x,则1x<2<2x.当x<1x时,()0fx,()fx在区间1(,)x内为增函数;w.w.w.k.s.5.u.c.o.m当1x<x<2x时,()0fx,()fx在区间12(,)xx内为减函数;当2xx时,()0fx,()fx在区间2(,)x内为增函数.所以()fx在1xx处取极大值,在2xx处取极小值.因此,当且仅当12c时,函数()fx在2xx处存在唯一极小值,所以22tx.于是()gt的定义域为(2,).由2()3120ftttc得2312ctt.于是3232()()626,(2,)gtftttctttt.当2t时,2()6126(2)0,gttttt所以函数()gt在区间(2,)内是减函数,故()gt的值域为(,8).w.w.w.k.s.5.u.c.o.m7.(2009陕西卷文)(本小题满分12分)已知函数3()31,0fxxaxa求()fx的单调区间;若()fx在1x处取得极值,直线y=my与()yfx的图象有三个不同的交点,求m的取值范围。w.w.w.k.s.5.u.c.o.m解析:(1)'22()333(),fxxaxa当0a时,对xR,有'()0,fx当0a时,()fx的单调增区间为(,)当0a时,由'()0fx解得xa或xa;由'()0fx解得axa,当0a时,()fx的单调增区间为(,),(,)aa;()fx的单调减区间为(,)aa。(2)因为()fx在1x处取得极大值,所以'2(1)3(1)30,1.faa所以3'2()31,()33,fxxxfxx由'()0fx解得121,1xx。由(1)中()fx的单调性可知,()fx在1x处取得极大值(1)1f,在1x处取得极小值(1)3f。因为直线ym与函数()yfx的图象有三个不同的交点,又(3)193f,(3)171f,结合()fx的单调性可知,m的取值范围是(3,1)。9.(2009天津卷理)(本小题满分12分)已知函数22()(23)(),xfxxaxaaexR其中aR(1)当0a时,求曲线()(1,(1))yfxf在点处的切线的斜率;(2)当23a时,求函数()fx的单调区间与极值。本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。满分12分。(I)解:.3)1(')2()(')(022efexxxfexxfaxx,故,时,当.3))1(,1()(efxfy处的切线的斜率为在点所以曲线(II).42)2()('22xeaaxaxxf解:.2232.220)('aaaaxaxxf知,由,或,解得令以下分两种情况讨论。(1)a若>32,则a2<2a.当x变化时,)()('xfxf,的变化情况如下表:xa2,a222aa,2a,2a+0—0+↗极大值↘极小值↗.)22()2()2()(内是减函数,内是增函数,在,,,在所以aaaaxf.3)2()2(2)(2aaeafafaxxf,且处取得极大值在函数.)34()2()2(2)(2aeaafafaxxf,且处取得极小值在函数(2)a若<32,则a2>2a,当x变化时,)()('xfxf,的变化情况如下表:x2a,2aaa22,a2,a2+0—0+↗极大值↘极小值↗内是减函数。,内是增函数,在,,,在所以)22()2()2()(aaaaxf.)34()2()2(2)(2aeaafafaxxf,且处取得极大值在函数.3)2()2(2)(2aaeafafaxxf,且处取得极小值在函数10.(2009重庆卷文)(本小题满分12分
本文标题:函数导数高考题汇编答案
链接地址:https://www.777doc.com/doc-2648937 .html