您好,欢迎访问三七文档
课题比的意义课型新授第1课时教学目标内容学习水平认识理解掌握运用1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。√√√√重点比与除法、分数的关系板书设计比的意义15比10记作15∶1010比15记作10∶1542252比90记作42252:903∶2=3÷2=难点理解比的意义教法引导法、讲解法学法具探究法、练习法教学过程教学过程:一、复习。分数与除法有什么关系?二、新授。1.教学比的意义。(1)教学同类量的比。(2)教学不同类量的比(3)归纳比的意义。211……前项……比号……后项……比值2.教学比的写法、比的各部分名称。比的写法。15比10记作15∶1010比15记作10∶1542252比90记作42252:90比的各部分名称。“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如:3∶2=3÷2=3.教学比与除法、分数的关系。(1)比与除法的关系结合上面的讲解,板书下表:除法被除数÷(除号)除数商分数分子-(分数线)分母分数值比前项:(比号)后项比值三、巩固练习。1.完成课本“做一做”。2.练习十一第1、2题。四、布置作业。1.课本练习十一的第3题。2.补充:求出比值。0.375∶0.87581∶430.75∶522.6∶3.教学后记211……前项……比号……后项……比值课题比的基本性质课型新授第1课时教学目标内容学习水平认识理解掌握运用1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。√√√√重点理解比的基本性质,掌握化简比的方法板书设计比的基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。6÷8=(6×2)÷(8×2)=12÷166:8=(6×2)∶(8×2)=12:166:8=(6÷2)∶(8÷2)=3:46÷8=(6÷2)÷(8÷2)=3÷4难点化简比与求比值0的不同教法引导法、讲解法学法具探究法、练习法教学过程教学过程:一、复习。1、什么叫做比?比的各部分名称是什么?2、比与除法和分数有什么关系?3、除法中的商不变规律是什么?举例:6÷8=(6×2)÷(8×2)=12÷164、分数的基本性质是什么?举例:86==43二、新授6÷28÷21、猜测比的性质:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。6÷8=(6×2)÷(8×2)=12÷166:8=(6×2)∶(8×2)=12:166:8=(6÷2)∶(8÷2)=3:46÷8=(6÷2)÷(8÷2)=3÷43、小组派代表说明验证过程,其他同学补充说明。4、正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。5、教学例1(1)出示例题:把下面各比化成最简单的整数比15∶1061∶920.75∶2(2)引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的)(3)指名学生说出自己化简的方法,全班评判。三、练习1、P46“做一做”2、练习十一第2题(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”)四、总结今天我们学习了什么知识?比的基本性质可以应用在哪些方面?教学后记课题比的应用课型新授第1课时教学目标内容学习水平认识理解掌握运用1、结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。√√√√重点进一步掌握按比例分配应用题的结构特点和解题思路。板书设计比的应用①稀释液平均分成的份数:1+4=5②浓缩液的体积:500×=100(ml)③水的体积:500×=400(ml)答:稀释液100ml,水400ml。难点正确分析解答比例分配应用题。教法引导法、讲解法学法具探究法、练习法教学过程教学过程:一、复习。二、新授。1、教学例2。(1)出示例2:(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)11+41+4411+4(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)④稀释液平均分成的份数:1+4=5⑤浓缩液的体积:500×=100(ml)⑥水的体积:500×=400(ml)答:稀释液100ml,水400ml。(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)2、补充练习(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?(2)学生试做“做一做”中的第2题。三、巩固练习。练习十二的第1、3题。四、布置作业。练习十二第2、4、5、6、7题。教学后记11+41+44课题整理复习(1)课型新授第1课时教学目标内容学习水平认识理解掌握运用使学生进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。√√√√重点分数除法的计算方法,化简比。板书设计整理复习(1)难点正确计算分数除法。教法引导法学法具练习法教学过程教学过程:一、复习分数除法的意义和计算法则1、这一章我们学习了分数除法的有关知识.请大家回忆一下分数除法有几种类型?(1)分数除以整数,例如95÷5;(2)一个数除以分数,它又包括整数除以分数,例如20÷94;和分数除以分数,例如245÷165。2、分数除法的意义(1)第52页“整理和复习”的第1题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写的算式填写在书上)(2)让学生说说是怎样题改写成两道分数除法算式的。(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)3、分数除法的计算法则(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?(2)引导学生概括出分数除法的统一计算法则:除以一个数(0除外),等于乘这个数的倒数。二、复习比的意义和基本性质1、比的意义(1)什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除以后项所得的商.)(2)以“3∶2”为例,让学生分别说出“比号”“前项”和“后项”。(3)比和比值有什么区别和联系呢?(比值是一个数,是比的前项除以比的后项所得的商,它通常用分数表示,也可以用小数表示,有时还是整数。而比所表示的是两个数的关系,如3∶2,虽然也可以写成分数的形式23,但仍读作3比2。特别强调比的后项不能为0)(4)比和除法、分数的联系除法被除数÷(除号)除数商分数分子-(分数线)分母分数值比前项:(比号)后项比值2、比的基本性质(1)复习概念及化简方法①比的基本性质是什么?②应用比的基本性质,怎样对整数比进行化简?③不是整数的比应该怎样化简?(2)学生做P52“整理和复习”第3题(指名学生说说自己是怎样想的)三、课堂练习1、练习十三的第1题、2题、3题、7题教学后记课题整理复习(2)课型新授第1课时教学目标内容学习水平认识理解掌握运用使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数乘除法应用题,提高学生解答分数应用题的能力.√√√√重点正确解答分数乘除法应用题板书设计整理复习(2)难点分数乘除法应用题的联系与区别教法引导法学法具练习法教学过程教学过程:一、推理训练1、男生占全班人数的53,女生占全班人数的()。2、一堆煤,用去了74,还剩下()。3、今年比去年增产92,今年相当于去年的()。二、对比训练:1、一步分数应用题①张大爷养了200只鹅,500只鸭,鹅的只数与鸭的只数的几分之几?②张大爷养了200只鹅,鹅的只数是鸭的只数的52,养了多少只鹅?③张大爷养了200只鹅,鸭的只数是鹅的只数的52,养了多少只鸭?(1)比较相同点和不同点(2)比较完后,学生将三道题的解答过程写在练习本上。2、出示题组:①上海到汉口的水路长1125千米,一艘轮船从上每开往汉口,已经行了3/5,离汉口还有多少千米?②一艘轮船从上海开往汉口,已经行了3/5,离汉口还有450千米,上海到汉口的水路长多少千米?(1)学生自己画线段图,分析,解答。](2)对比:两题有什么异同?你是怎样分析的,如何区别的?3、出示题组:①停车场有8辆大客车,小汽车的辆数比大客车多1/6,小汽车有多少辆?②停车场有8辆大客车,大客车的辆数比小汽车少1/7,小汽车有多少辆?③停车场有21辆小汽车,大客车的辆数比小汽车少1/7,大客车有多少辆④停车场有21辆小汽车,小汽车的辆数比大客车多1/6,大客车有多少辆?(1)学生独立画线段图,分析,解答。](2)对比:1、2两题有什么异同?3、4两题呢?你是怎样分析的,如何区别的?(3)解答稍复杂的分数乘除法应用题有规律吗?规律是什么?引导学生归纳出:㈠分析“分率句”,判断单位“1”是哪个数量?㈡画出线段图,找出“量”和“率”的对应关系。㈢确定已知单位“1”用乘法,求单位“1”用除法或用方程解。三、课堂练习:四、作业:练习十四的第6--10题教学后记课题圆的认识课型新授第1课时教学目标内容学习水平认识理解掌握运用1、使学生认识圆,掌握圆的特征,理解直径与半径的关系。2、会使使用工具画圆。3、培养学生观察、分析、综合、概括及动手操作能力√√√√重点圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。板书设计圆的认识通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。难点画圆的方法,认识圆的特征。教法引导法、讲解法学法具探究法、练习法教学过程教学过程:一、复习。1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?1、示圆片图形:(1)圆是用什么线围成的?(圆是一种曲线图形)举例:生活中有哪些圆形的物体?二、认识圆的特征。1、学生自己在准备好的纸上画一个圆,并动手剪下。2、动手折一折。0dr(1)折过2次后,你发现了什么?(两折痕的交点叫做圆心,圆心一般用字母O表示)(2)再折出另外两条折痕,看看圆心是否相同。3、认识直径和半径。(1)将折痕用铅笔画出来,比一比是否相等?(2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)(3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。4、讨论:(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。在同一个圆里,有无数条半径,且所有的半径都相等。5、直径与半径的关系。(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。得出结论:在同一个圆里,6、巩固练习:课本58“做一做”的第1-
本文标题:六年级上教案
链接地址:https://www.777doc.com/doc-2672291 .html