您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 六年级数学下册第三单元导学案
六年级数学下册第三单元导学案六年级数学下册第三单元教学计划一、教学内容的安排内容安排例题安排练习安排课时安排比例的意义和基本性质比例的意义例1:比例的意义练习六4课时比例的基本性质以例1中的比例式为例解比例例2:解比例(一)例3:解比例(二)正比例和反比例的意义成正比例的量例1:正比例的意义练习七4课时例2:正比例的图像成反比例的量例3:反比例的意义比例的应用比例尺比例尺的概念练习八5课时例1:线段比例尺改成数值比例尺例2:根据比例尺和图上距离求实际距离例3:综合运用比例尺及有关知识作图图形的放大与缩小例4:图形的放大与缩小练习九用比例解决问题例5:用正比例的意义解决问题例6:用反比例的意义解决问题整理和复习练习十1课时综合应用自行车里的数学1课时二、教材内容分析:本实验教材与人教版大纲教材相比:增加了认识正比例关系的图像、将实际尺寸放大的比例尺实例、综合运用比例尺及有关知识作图、图形的放大与缩小等教学内容。新增内容的“课标”依据:“能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。”;“能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似”。基本认识:本单元的教学内容比原来多,教学要求比原来高。本单元的“比例的意义和基本性质、正比例和反比例的意义”等,是“数与代数”领域的教学内容;比例尺、图形的放大与缩小是“空间与图形”领域的教学内容,把不同领域的教学内容有机融合是教材编排的特色。学生已有的经验:图形相似放大或缩小的生活现象(例如:第32页、第56页的情景,这些相似放大或缩小的现象学生都见过,也知道它们之间的大小关系,只是没有从比例的角度去认识这些生活中放大或缩小现象的数学含义),画折线统计图的经验(它可以迁移到画正比例关系图像的教学活动中),生活中的地图(例如,学生都知道中国地图是把祖国的实际版图缩小后的样子,有的学生可能知道它是按一定的比例缩小的,还有的学生可能留意过上面的比例尺,只是不可能全班学生都准确、全面地理解比例尺的数学含义)。学生已有的知识:比的有关知识(比的意义、求比值、比的基本性质、化简比等,在以前学习比的基本性质、化简比时,学生也曾见过表示两个比相等的式子(如,15:10=3:2),不过当时只是从比的基本性质的角度认识这样的等式而已),解方程(解比例本身就是解方程,只是比例形式的方程与以前学习的方程形式不同,需要运用比例的基本性质把它转化为以前学过的形式罢了),常见的数量关系(常见的数量关系是学生理解正、反比例意义的重要基础,例如,学生知道圆柱的体积=底面积×高,并会运用这一数量关系解决问题,但学生并没有从把其中一个量看做常量、另外两个量看做变量的角度,去认识两个变量之间的关系),用归一、归总的方法解决问题(用正、反比例解决的问题,学生已经会用归一、归总的算术方法解答)。三、本单元学习目标。1、理解比例的意义和基本性质,会解比例。2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育第一课时比例的意义和基本性质导学案一、学习目标1.使学生理解并掌握比例的意义和基本性质.2.学习判定两个比是否组成比例的方法.二、预习学案.(一)教师提问复习.1.什么叫做比?2.什么叫做比值?(二)求下面各比的比值.12∶164.5∶2.710∶6教师提问:上面哪些比的比值相等?(三)教师小结4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以用等号连接.教师板书:4.5∶2.7=10∶6三、导学案.(一)比例的意义(课件演示:比例的意义)例1.指导学生观察教材32页图。1.教师提问:从上面两图中可以看到,这些国旗的长和宽都相同吗?但不管大小,它们的长与宽的比值分别是多少?这两个比的比值各是多少?它们有什么关系?(两个比的比值都是都相等)2.教师明确:两个比的比值都是,所以这两个比相等.因此可以写成这样的等式2.4:1.6=60:40=所以2.4:1.6=60:40也可写成竖式:===3.揭示意义:像2.4:1.6=60:40、5:=15:10这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)教师提问:什么叫做比例?组成比例的关键是什么?板书:表示两个比相等的式子叫做比例.关键:两个比相等4.练习①下面哪组中的两个比可以组成比例?把组成的比例写出来.(1)6∶10和9∶15(2)20∶5和1∶4(3):和6∶4(4)0.6∶0.2和4∶3②教材的做一做第2题5.填空(1)如果两个比的比值相等,那么这两个比就()比例.(2)一个比例,等号左边的比和等号右边的比一定是()的.(二)比例的基本性质(课件演示:比例的基本性质)1.教师以60∶40=15∶10为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)2.练习:指出下面比例的外项和内项.4.5∶2.7=10∶66∶10=9∶153.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?以80∶2=200∶5为例,指名来说明.外项积是:80×5=400内项积是:2×200=40080×5=2×2004.学生自己任选两三个比例,计算出它的外项积和内项积.5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质板书课题:加上“和基本性质”,使课题完整.6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?教师板书:7.练习应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.6∶3和8∶50.2∶2.5和4∶50(三)、课堂小结.这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.四、课堂检测.(一)说一说比和比例有什么区别.(二)填空.在6∶5=30∶25这个比例中,外项是()和(),内项是()和().根据比例的基本性质可以写成()×()=()×().(三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.1.6∶9和9∶122.1.4∶2和7∶103.0.5∶0.2和4.6.2:和7.5∶1(四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)2、3、4和6五、课后作业.根据3×4=2×6写出比例.六、板书设计.比例的意义和性质2.4:1.6=60:40=2.4:1.6====60:40七:反思该教学设计教学目的具体明确,重点突出,概念呈现程序合理,层次清楚,逻辑性强,符合已知到未知、个别到一般、具体到抽象等认识规律,教学效果好。第二课时解比例导学案一、学习目标1.使学生理解解比例的意义.2.使学生在了解比例的含义的基础上掌握解比例的方法,从而熟练解比例.教学重点使学生掌握解比例的方法,学会解比例.教学难点引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已学过的含有未知数的等式.二、预习学案(一)解下列简易方程,并口述过程.2=8×9(二)什么叫做比例?什么叫做比例的基本性质?(三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?6∶10和9∶1520∶5和4∶15∶1和6∶2(四)根据比例的基本性质,将下列各比例改写成其他等式.3∶8=15∶40三、导学案(一)揭示解比例的意义.1.将上述两题中的任意一项用来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.2.学生交流根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.(二)教学例2.出示教材35页的例21.讨论:模型的高度与原塔高度的比是1:10.是不是模型的高度与原塔高度的比也是1:102.组织学生交流并明确.(1)根据比例的基本性质,可以把比例改写为:(模型的高度):320=1:10.(2)如果把模型的高度设为x会形成怎样的关系式呢?(3)规范并板书解比例的过程.解:设这座模型的高度x米X:320===1:1010X===320×1X===X===320答语。(三)教学例3例3.解比例===1.组织学生独立解答.2.学生汇报3.练习:解下面的比例.X:10===:0.4:X===1.2:2===(四)、全课小结这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.四、课堂检测(一)解下面的比例..:==:x0.8:4===x:8(二)根据下面的条件列出比例,并且解比例.1.5和8的比等于40与的比.2.和的比等于和的比.3.等号左端的比是1.5∶,等号右端比的前项和后项分别是3.6和4.8.五、课后作业(一)解比例.==∶=3∶12(二)育新小区1号楼的实际高度为35m,它的高度与模型高度的比是500:1模型的高度是多少厘米?(三)把下面的等式改写成比例①3×40===8×5②2.5×0.4===0.5×2六、板书设计解:设这座模型的高度x米解比例===X:320===1:1010X===320×1X===X===320答语。七、反思从实际例子引入所解决的问题,从而使学生能够根据题目的特点运用比例求出缺少的项,同时深刻的理解比例的含义,明确比例在生活中运用的普遍性。第三课时成正比例的量导学案一、学习目标1.使学生理解正比例的意义.2.能根据正比例的意义判断两种量是不是成正比例.3.培养学生的抽象概括能力和分析判断能力.教学重点使学生理解正比例的意义.教学难点引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.二、预习学案口答(课件演示:成正比例的量)1.已知路程和时间,怎样求速度?2.已知总价和数量,怎样求单价?3.已知工作总量和工作时间,怎样求工作效率?三、导学案这些都是我们已经学过的常见的数量关系.这节课,我们继续研究这些数量关系中的一些特征.1.教学例1.(课件演示:成正比例的量)(1)问:大家看到例1中的一排杯子,是什么形状的?杯子的高度是相等的,里面装着一些水,经过测量统计出了一个表格,那位同学说说这个表格的意思?(2)表中有哪几种量是已知量?我们刚才说当水装到2厘米时,体积为50立方厘米;当水装到4厘米时,体积为100立方厘米……这说明水的高度这种量变化了,体积这种量怎么样了?(也变化了)(3)像这样一种量变化另一重量也随着变化,我们就说这两种量是两种相关联的量。(4)大家观察例1中的数据,水的体积是怎样随着高度变化的?(5)我们看这个表格(投影例1表格),从左往右看当水的高度到6厘米的时候体积是多少?这个时候水的高度和体积分别是2厘米高度时的多少倍?高是多少倍?体积呢?我们从右往左看,又发现了什么呢?(6)大家再把表格填写完整,根据我们所学的圆柱的体积公式,完成这个表格。大家观察一下结果有什么特点?(7)实际上这个底面积又相当于圆柱体积和圆柱高的什么?(比值)那么我们可以看到例1中水的体积和水的高之比的比值,即底面积是一样的,是相等的.(8)哪位同学能把刚才所观察到的小结一下?水的高度和体积是怎样变化的?变化的时候有什么规律?2.继续学习补充例题(1)投影出示例题一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶
本文标题:六年级数学下册第三单元导学案
链接地址:https://www.777doc.com/doc-2673142 .html