您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 二次函数图像和性质习题精选答案
二次函数图像和性质习题精选(含答案)参考答案与试题解析一.选择题(共30小题)1.(2014•宁夏)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.菁优网版权所有专题:数形结合.分析:本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致.(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较.)解答:解:A、函数y=ax中,a>0,y=ax2中,a>0,但当x=1时,两函数图象有交点(1,a),故A错误;B、函数y=ax中,a<0,y=ax2中,a>0,故B错误;C、函数y=ax中,a<0,y=ax2中,a<0,但当x=1时,两函数图象有交点(1,a),故C正确;D、函数y=ax中,a>0,y=ax2中,a<0,故D错误.故选:C.点评:函数中数形结合思想就是:由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.2.(2014•北海)函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;反比例函数的图象.菁优网版权所有分析:分a>0和a<0两种情况讨论二次函数和反比例函数图象所在的象限,然后选择答案即可.解答:解:a>0时,y=ax2+1开口向上,顶点坐标为(0,1),y=位于第一、三象限,没有选项图象符合,a<0时,y=ax2+1开口向下,顶点坐标为(0,1),y=位于第二、四象限,B选项图象符合.故选:B.点评:本题考查了二次函数图象与反比例函数图象,熟练掌握系数与函数图象的关系是解题的关键.3.(2014•遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.考点:二次函数的图象;一次函数的图象.菁优网版权所有分析:本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.解答:解:A、由二次函数的图象可知a<0,此时直线y=ax+b经过二、四象限,故A可排除;B、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、四象限,故B可排除;C、二次函数的图象可知a>0,此时直线y=ax+b经过一、三,故C可排除;正确的只有D.故选:D.点评:此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.4.(2014•南昌)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.考点:二次函数的图象;反比例函数的图象.菁优网版权所有分析:本题可先由反比例函数的图象得到字母系数k<﹣1,再与二次函数的图象的开口方向和对称轴的位置相比较看是否一致,最终得到答案.解答:解:∵函数y=的图象经过二、四象限,∴k<0,由图知当x=﹣1时,y=﹣k>1,∴k<﹣1,∴抛物线y=2kx2﹣4x+k2开口向下,对称为x=﹣=,﹣1<<0,∴对称轴在﹣1与0之间,故选:D.点评:此题主要考查了二次函数与反比例函数的图象与系数的综合应用,正确判断抛物线开口方向和对称轴位置是解题关键.属于基础题.5.(2014•泰安)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1013y﹣1353下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个考点:二次函数的性质;二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式(组).菁优网版权所有专题:图表型.分析:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.解答:解:(1)由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;(2)∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x>1.5时,y的值随x值的增大而减小,故(2)错误;(3)∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;(4)∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故(4)正确.故选:B.点评:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.6.(2014•广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.菁优网版权所有专题:数形结合.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.7.(2014•盘锦)如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是()A.0或2B.0或1C.1或2D.0,1或2考点:二次函数的性质.菁优网版权所有专题:数形结合;分类讨论;方程思想.分析:分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程x2+bx+c=1的解的个数.解答:解:分三种情况:点M的纵坐标小于1,方程x2+bx+c=1的解是2个不相等的实数根;点M的纵坐标等于1,方程x2+bx+c=1的解是2个相等的实数根;点M的纵坐标大于1,方程x2+bx+c=1的解的个数是0.故方程x2+bx+c=1的解的个数是0或1或2.故选:D.点评:考查了二次函数的性质,本题涉及分类思想和方程思想的应用.8.(2014•淄博)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6B.5C.4D.3考点:二次函数的性质.菁优网版权所有专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B到对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选:D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.9.(2013•徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)考点:二次函数的性质.菁优网版权所有专题:压轴题.分析:根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.解答:解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选B.点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.10.(2013•南宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大考点:二次函数的性质.菁优网版权所有分析:根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断.解答:解:A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意;B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数y=ax2+bx+c(a≠0)的最小值是﹣4,正确,故本选项不符合题意;C、由图象可知抛物线与x轴的一个交点为(﹣1,0),而对称轴为直线x=1,所以抛物线与x轴的另外一个交点为(3,0),则﹣1和3是方程ax2+bx+c=0(a≠0)的两个根,正确,故本选项不符合题意;D、由抛物线的对称轴为x=1,所以当x<1时,y随x的增大而减小,错误,故本选项符合题意.故选D.点评:此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题.11.(2012•济南)如图,二次函数的图象经过(﹣2,﹣1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0B.当x=0时,y的值大于1C.当x=﹣1时,y的值大于1D.当x=﹣3时,y的值小于0考点:二次函数的图象;二次函数的性质.菁优网版权所有专题:压轴题.分析:根据图象的对称轴的位置、增减性及开口方向直接回答.解答:解:A、由图象知,点(1,1)在图象的对称轴的左边,所以y的最大值大于1,不小于0;故本选项错误;B、由图象知,当x=0时,y的值就是函数图象与y轴的交点,而图象与y轴的交点在(1,1)点的左边,故y<1;故本选项错误;C、对称轴在(1,1)的右边,在对称轴的左边y随x的增大而增大,∵﹣1<1,∴x=﹣1时,y的值小于x=1时,y的值1,即当x=﹣1时,y的值小于1;故本选项错误;D、当x=﹣3时,函数图象上的点在点(﹣2,﹣1)的左边,所以y的值小于0;故本选项正确.故选D.点评:本题主要考查了二次函数图象上点的坐标特征.解答此题时,需熟悉二次函数图象的开口方向、对称轴、与x轴的交点等知识.12.(2012•德阳)设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3B.c≥3C.1≤c≤3D.c≤3考点:二次函数的性质.菁优网版权所有专题:压轴题.分析:因为当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,所以函数图象过(1,0)点,即1+b+c=0①,由题意可知当x=3时,y=9+3b+c≤0②,所以①②联立即可求出c的取值范围.解答:解:∵当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴函数图象过(1,0)点,即1+b+c=0①,∵当1≤x≤3时,总有y≤0,∴当x=3时,y=9+3b+c≤0②,①②联立解得:c≥3,故选B.点评:本题考查了二次函数的增减性,解
本文标题:二次函数图像和性质习题精选答案
链接地址:https://www.777doc.com/doc-2737547 .html