您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 二次函数中考复习课件
二次函数复习与练习课1、二次函数的定义定义:y=ax²+bx+c(a、b、c是常数,a≠0)条件:①a≠0②最高次数为2③代数式一定是整式1、y=-x²,,y=100-5x²,y=3x²-2x³+5,其中是二次函数的有____个。2332xxy2,函数当m取何值时,(1)它是二次函数?(2)它是反比例函数?222(2)mymmx(1)若是二次函数,则且∴当时,是二次函数。222m2m220mm(2)若是反比例函数,则且∴当时,是反比例函数。221m1m220mm2、二次函数的图象及性质抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a0)y=ax2+bx+c(a0)由a,b和c的符号确定由a,b和c的符号确定a0,开口向上a0,开口向下在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.abacab44,22abacab44,22abx2直线abx2直线abacyabx44,22最小值为时当abacyabx44,22最大值为时当xy0xy0abacab44,22abacab44,22(0,c)(0,c)练习1、二次函数y=x2+2x+1写成顶点式为:__________,对称轴为_____,顶点为______12y=(x+2)2-112x=-2(-2,-1)2、已知二次函数y=-x2+bx-5的图象的顶点在y轴上,则b=___。1202、已知抛物线顶点坐标(h,k),通常设抛物线解析式为_______________3、已知抛物线与x轴的两个交点(x1,0)、(x2,0),通常设解析式为_____________1、已知抛物线上的三点,通常设解析式为________________y=ax2+bx+c(a≠0)y=a(x-h)2+k(a≠0)y=a(x-x1)(x-x2)(a≠0)一般式顶点式交点式或两根式3、求抛物线的解析式1、根据下列条件,求二次函数的解析式。(1)、图象经过(0,0),(1,-2),(2,3)三点;(2)、图象的顶点(2,3),且经过点(3,1);(3)、图象经过(0,0),(12,0),且最高点的纵坐标是3。4、a,b,c符号的确定aa,bc△a决定开口方向和大小:a>0时开口向上,a<0时开口向下a、b同时决定对称轴位置:a、b同号时对称轴在y轴左侧a、b异号时对称轴在y轴右侧b=0时对称轴是y轴c决定抛物线与y轴的交点:c>0时抛物线交于y轴的正半轴c=0时抛物线过原点c<0时抛物线交于y轴的负半轴△决定抛物线与x轴的交点:△>0时抛物线与x轴有两个交点△=0时抛物线与x轴有一个交点△<0时抛物线与x轴没有交点(上正、下负)(左同、右异)(上正、下负)△=b2-4ac-2二次函数y=ax2+bx+c(a≠0)的几个特例:1)、当x=1时,2)、当x=-1时,3)、当x=2时,4)、当x=-2时,y=y=y=y=6)、2a+b0.xyo1-12>0=0>0<0>5)、b²-4ac0.>a+b+ca-b+c4a+2b+c4a-2b+cxy1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a0,b0,c0B、a0,b0,c0C、a0,b0,c0D、a0,b0,c0xy2、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a0,b0,c=0B、a0,b0,c=0C、a0,b0,c0D、a0,b0,c=0xy3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c、△的符号为()A、a0,b=0,c0,△0B、a0,b0,c0,△=0C、a0,b=0,c0,△0D、a0,b=0,c0,△0BACooo练习:熟练掌握a,b,c,△与抛物线图象的关系(上正、下负)(左同、右异)·c已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+bx+c=0的一个根D2yaxbxc240bacxy-11O1(2011甘肃兰州)如图所示的二次函数的图象中,刘星同学观察得出了下面四条信息:(1);(2)c1;(3)2a-b0;(4)a+b+c0。你认为其中错误的有()A.2个B.3个C.4个D.1个D练习:已知二次函数的图象如图所示,下列结论:⑴a+b+c=0⑵a-b+c﹥0⑶abc﹥0⑷b=2a其中正确的结论的个数是()A1个B2个C3个D4个Dx-110y5、抛物线的平移法则左加右减,上加下减练习⑴二次函数y=2x2的图象向平移个单位可得到y=2x2-3的图象;二次函数y=2x2的图象向平移个单位可得到y=2(x-3)2的图象。⑵二次函数y=2x2的图象先向平移个单位,再向平移个单位可得到函数y=2(x+1)2+2的图象。下3右3左1上2引申:y=2(x+3)2-4y=2(x+1)2+2判别式:b2-4ac二次函数y=ax2+bx+c(a≠0)图象一元二次方程ax2+bx+c=0(a≠0)的根xyO与x轴有两个不同的交点(x1,0)(x2,0)有两个不同的解x=x1,x=x2b2-4ac>0xyO与x轴有唯一个交点)0,2(ab有两个相等的解x1=x2=ab2b2-4ac=0xyO与x轴没有交点没有实数根b2-4ac<06、二次函数与一元二次方程的关系二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点△=b2–4ac0△=b2–4ac=0△=b2–4ac0若抛物线y=ax2+bx+c与x轴有交点,则△=b2–4ac≥0(1)如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=____,此时抛物线y=x2-2x+m与x轴有____个交点.(2)已知抛物线y=x2–8x+c的顶点在x轴上,则c=____.1116(3)一元二次方程3x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3x2+x-10与x轴的交点坐标是____.(-2、0)(5/3、0)1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的解析式.解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同a=1或-1又顶点在直线x=1上,且顶点到x轴的距离为5,顶点为(1,5)或(1,-5)所以其解析式为:(1)y=(x-1)2+5(2)y=(x-1)2-5(3)y=-(x-1)2+5(4)y=-(x-1)2-5展开成一般式即可.7、二次函数的综合运用
本文标题:二次函数中考复习课件
链接地址:https://www.777doc.com/doc-2745802 .html