您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 五年级奥数专题07奇数与偶数
.七奇数与偶数(A)年级班姓名得分一、填空题1.2,4,6,8,……是连续的偶数,若五个连续的偶数的和是320,这五个数中最小的一个是______.2.有两个质数,它们的和是小于100的奇数,并且是17的倍数.这两个质数是_____.3.100个自然数,它们的和是10000,在这些数里,奇数的个数比偶数的个数多,那么,这些数里至多有_____个偶数.4.右图是一张靶纸,靶纸上的1、3、5、7、9表示射中该靶区的分数.甲说:我打了六枪,每枪都中靶得分,共得了27分.乙说:我打了3枪,每枪都中靶得分,共得了27分.已知甲、乙两人中有一人说的是真话,那么说假话的是_____.5.一只电动老鼠从右上图的A点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转.当这只电动老鼠又回到A点时,甲说它共转了81次弯,乙说它共转了82次弯.如果甲、乙二人有一人说对了,那么谁正确?6.一次数学考试共有20道题,规定答对一题得2分,答错一题扣1分,未答的题不计分.考试结束后,小明共得23分.他想知道自己做错了几道题,但只记得未答的题的数目是个偶数.请你帮助小明计算一下,他答错了_____道题.7.有一批文章共15篇,各篇文章的页数分别是1页、2页、3页……14页和15页的稿纸,如果将这些文章按某种次序装订成册,并统一编上页码,那么每篇文章的第一页是奇数页码的文章最多有_____篇.8.一本书中间的某一张被撕掉了,余下的各页码数之和是1133,这本书有_____页,撕掉的是第_____页和第_____页.9.有8只盒子,每只盒内放有同一种笔.8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支.在这些笔中,圆珠笔的支数是钢笔的支数的2倍,钢笔支数是铅笔支数的31,只有一只盒里放的水彩笔.这盒水彩笔共有_____支.10.某次数学竞赛准备了35支铅笔作为奖品发给一、二、三等奖的学生,原计划一等奖每人发给6支,二等奖每人发给3支,三等奖每人发给2支,后来改为一等将每人发13支,二等奖每人发4支,三等奖每人发1支.那么获二等奖的有_____人.A13579579192874365二、解答题11.如下图,从0点起每隔3米种一棵树.如果把3块“爱护树木”的小木牌分别挂在3棵树上,那么不管怎么挂,至少有两棵挂牌树之间的距离是偶数(以米为单位).试说明理由.12.小地球仪上赤道大圆与过南北极的某大圆相交于A、B两点.有黑、白二蚁从A点同时出发分别沿着这两个大圆爬行.黑蚁爬赤道大圆一周要10秒钟,白蚁爬过南北极的大圆一周要8秒钟.问:在10分钟内黑、白二蚁在B点相遇几次?为什么?13.如右图所示,一个圆周上有9个位置,依次编为1~9号.现在有一个小球在1号位置上,第一天顺时针前进10个位置,第二天逆时针前进14个位置.以后,第奇数天与第一天相同,顺时针前进10个位置,第偶数天与第二天相同,逆时针前进14个位置.问:至少经过多少天,小球又回到1号位置.14.在右图中的每个中填入一个自然数(可以相同),使得任意两个相邻的中的数字之差(大数减小数),恰好等于它们之间所标的数字.能否办到?为什么?BA3542103691215182124七奇数与偶数(B)年级班姓名得分一、填空题1.五个连续奇数的和是85,其中最大的数是_____,最小的数是_____.2.三个质数△、□、○,如果□△1,△+□=○,那么△=_____.3.已知a、b、c都是质数,且a+b=c,那么abc的最小值是_____.4.已知a、b、c、d都是不同的质数,a+b+c=d,那么abcd的最小值是_____.5.a、b、c都是质数,c是一位数,且ab+c=1993,那么a+b+c=_____.6.三个质数之积恰好等于它们和的7倍,则这三个质数为_____.7.如果两个两位数的差是30,下面第_____种说法有可能是对的.(1)这两个数的和是57.(2)这两个数的四个数字之和是19.(3)这两个数的四个数字之和是14.8.一本书共186页,那么数字1,3,5,7,9在页码中一共出现了_____次.9.筐中有60个苹果,将它们全部取出来,分成偶数堆,使得每堆的个数相同,则有_____种分法.10.从1至9这九个数字中挑出六个不同的数,填在下图所示的六个圆圈内,使任意相邻两个圆圈内数字之和都是质数.那么最多能找出_____种不同的挑法来.(六个数字相同,排列次序不同算同一种)123456789二、解答题11.在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来,填在这个方格中,例如a=5+3=8.问:填入的81个数字中,奇数多还是偶数多?12345678912.能不能在下式:1□2□3□4□5□6□7□8□9=10的每个方框中,分别填入加号或减号,使等式成立?13.在八个房间中,有七个房间开着灯,一个房间关着灯.如果每次同时拨动四个房间的开关,能不能把全部房间的灯关上?为什么?14.一个工人将零件装进两种盒子中,每个大盒子装12只零件,每个小盒子装5只零件,恰好装完.如果零件一共是99只,盒子个数大于10,这两种盒子各有多少个?———————————————答案——————————————————————1.60这五个连续偶数的第三个(即中间的那一个)偶数是3205=64.所以,最小的偶数是60.2.2,83因为两个质数的和是奇数,所以必有一个是2.小于100的17的奇数倍有17,51和85三个,17,51与2的差都不是质数,所以另一个质数是85-2=83.3.48由于100个自然数的和是10000,即100个自然数中必须有偶数个奇数,又由于奇数比偶数多,因此偶数最多只有48个.4.甲由于分数都是奇数,6个奇数之和为偶数,不可能是奇数27,所以说假话的是甲.5.甲因为老鼠遇到格点必须转弯,所以经过多少格点就转了多少次弯.如右图所示,老鼠从黑点出发,到达任何一个黑点都是转奇数次弯,所以甲正确.6.3小明做错的题的数目一定是奇数个,若是做错1个,则应做对12个才会得122-1=23分,这样小明共做13个题,未做的题的个数7不是偶数;若是做错3个,则应做对13个才能得132-3=23分,这样未答的题是4个,恰为偶数个.此外小明不可能做错5个或5个以上的题.故他做错的题有3个.7.11根据奇数+偶数=奇数的性质,先编排偶数页的文章(2页,4页,…,14页),这样共有7篇文章的第一页都是奇数页码.然后,编排奇数页的文章(1页,3页,…,15页),根据奇数+奇数=偶数的性质,这样编排,就又有4篇文章的第一页都是奇数页码.所以,每篇文章的第一页是奇数页码的文章最多是7+4=11(篇).8.48,21,22设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n21(n+1)由题意可知,n21(n+1)1133由估算,当n=48时,n21(n+1)=214849=1176,1176-1133=43.根据书页的页码编排,被撕一张的页码应是奇、偶,其和是奇数,43=21+22.所以,这本书有48页,被撕的一张是第21页和第22页.9.49依题意知,若钢笔为1份,则圆珠笔为2份,铅笔为3份,也就是说,这三种笔的总支数一定是6的倍数,即能同时被2和3整除.又因为8只盒子中有3只盒子装的笔的支数是偶数,5只盒子装的笔的支数是奇数,根据偶数+奇数=奇数,可知装有铅笔、圆珠笔、钢笔的7只盒子一定有3只盒子里装有偶数支笔,4支盒子里面装有奇数支笔,装有水彩笔的盒子一定装有奇数支笔.把8只盒子所装笔支数的数字分别加起来:1+7+2+3+3+3+3+6+3+8+4+2+4+9+5+1=64因为64-(4+9)=51正好能被3整除,所以装有水彩笔的盒子共装有49支.10.3首先根据“后来改为一等奖每人发13支”,可以确定获一等奖的人数不大于3.否则仅一等奖就要发不小于39支铅笔,已超过35支,这是不可能的.其次分别考虑获一等奖有2人或者1人的情况:当获一等奖有2人时,那么按原计划发二、三等奖的铅笔数应该是35-62=23,按改变后发二、三等奖的铅笔数应该是35-132=9.因为23是奇数,按原计划发三等奖每人2支铅笔,则发三等奖的铅笔总数必为偶数,所以发二等奖的铅笔总数只能是奇数,于是获二等奖的人数也必是奇数.又根据改变后“二等奖每人发4支”,可以确定获二等奖的人数仅1人(否则仅二等奖就要发超过9支铅笔了),经检验,这是不可能的,这就是说,获一等奖不会是2人.当获一等奖有1人时,那么按原计划发二、三等奖的铅笔数应是35-6=29,按改变后发二、三等奖的铅笔数应是35-13=22.因为29仍是奇数,类似前种情况的讨论,可以确定获二等奖的人数必定是奇数.又根据改变后“二等奖每人发4支”,且总数不14235超过22支,我们能够推知二等奖人数不会超过5,经检验,只有获二等奖是3人才符合题目要求.11.相距最远的两块木牌的距离,等于它们分别与中间一块木牌的距离之和.如果三块木牌间两两距离都是奇数,就会出现“奇+奇=奇”,这显然不成立,所以必有两块木牌的距离是偶数.12.相遇0次.(黑、白二蚁永不能在B点相遇)黑蚁爬半圆需要5秒钟,白蚁爬半圆需要4秒钟,黑、白二蚁同时从A点出发,要在B点相遇,必须满足两个条件:①黑、白二蚁爬行时间相同,②在此时间内二蚁爬行奇数个半圆.但黑蚁爬行奇数个半圆要用奇数秒(5奇数),白蚁爬行奇数个半圆要用偶数秒(4奇数),奇数与偶数不能相等.所以黑、白二蚁永远不能在B点相遇.13.顺时针前进10个位置,相当于顺时针前进1个位置;逆时针前进14个位置,相当于顺时针前进18-14=4(个)位置.所以原题相当于:顺时针每天1个位置,4个位置交替前进,直到前进的位置个数是9的倍数为止.偶数天依次前进的位置个数:5,10,15,20,25,30,35,40,……奇数天依次前进的位置个数:1,6,11,16,21,26,31,36,41,……第15天前进36个位置,36天是9的倍数,所以第15天又回到1号位置。14.不能.如果能,设最上面中的数是奇数(见下图),由奇数奇数=偶数;偶数偶数=偶数;奇数偶数=奇数,沿顺时针方向推知,最上面中又应是偶数,矛盾.当最上面中是偶数时,同理可证.偶奇奇偶奇偶B1.21,13这五个数的中间数855=17,可知最大数是21,最小数是13.2.2因为□△1,△+□=○,所以○□△.这里的关键是明确质数除2以外都是奇数,假如△不等于2,则它一定是奇数,那么△+□=偶数,显然这个偶数不会是质数.所以,△一定等于2.3.30因为所有的质数除2以外都是奇数,题中a+b=c,仿上题,由数的奇偶性可以推知a=2,b,c都是质数,根据abc的值最小的条件,可推知b=3,c=5,所以abc的最小值是235=30.4.3135在所有质数中除2是偶数以外,其余的都是奇数,如果a,b,c,d中有一个为2,不妨设a=2,则b,c,d均为奇数,从而a+b+c为偶数,不符合条件a+b+c=d,所以a,b,c,d都是奇数.再根据abcd的值最小的条件,可推知a=3,b=5,c=11,d=19.因此abcd的最小值为351119=3135.5.194由ab+c=1993知,ab与c奇偶性不同.当ab为偶数,c为奇数时,c的值为3、5或7,不妨设b为2,则a的值为995,994或993.因为995、994、993都不是质数,所以不合题意舍去.当ab为奇数,c为偶数时,c=2,ab=1991,1991=11181,从而a的值是11(或181),b的值是181(或11).2、11、181均为质数符合题意.所以a+b+c=2+11+181=194.6.3,5,7依题意,设三个质数为X,Y,Z,则X+Y+Z=7ZYX,这样三个质数必定有一个质数是7.如果X=7,则YZ=Y+Z+7,即YZ-(Y+Z)=7.根据数的奇偶性:偶-奇=奇;奇-偶=奇,进行讨论.当YZ为偶数,Y+Z为奇数时
本文标题:五年级奥数专题07奇数与偶数
链接地址:https://www.777doc.com/doc-2748955 .html