您好,欢迎访问三七文档
TheCross-SectionofExpectedStockReturnsEUGENEF.FAMAandKENNETHR.FRENCH(1992)摘要:结合两个简单的衡量变量:规模和账面对市价比,获得与市场β、规模、财务杠杆、账面对市价比、收益价格比有关的股票平均回报率横截面变动的关系。而且,当检验中考虑到β的变动与规模无关时,即使β是唯一解释变量,市场β跟股票平均回报率间的关系是无关的。Sharpe(1964),Linter(1965),和Black(1972)所提出的资产定价模型长期被学术界及实务界用来探讨平均回报率与风险的关系。这个模型核心预测是财富投资的市场组合是马科维茨提出的均值-方差有效。效率市场投资组合意味着:(a)证券的预期回报率与市场β(一个证券收益对市场收益的回归斜率)是正的线性函数关系。(b)市场βs有能力解释预期横截面回报率。实证上的发现有许多与Sharpe-Lintner-Black(SLB)模型相矛盾的地方。最突出的是Banz(1981)的规模效应:在给定市场βs下预期股票回报率的横截面,加入市值ME(股票价格乘以流通在外股数)这个解释变量,结果显示在给定他们的β估计下,低市值股票的平均回报率太高;高市值股票的平均回报率则太低。另一个有关SLB模型的矛盾则是Bhandari(1988)所提出的财务杠杆与平均回报率间的正相关。财务杠杆与风险及回报率相关看起来似乎合理,但在SLB模型下,财务杠杆风险应已包含于市场β中。然而Bhandari发现财务杠杆能协助解释包含规模(ME)和β的平均股票回报率的横截面变动。Stattman(1980),Rosenberg,Reid,andLanstein(1985)发现美国股票的平均回报率与普通股账面价值(BE)市值(ME)比有正相关。Chan,Hamao,andLakonishok(1991)发现账面对市价比(BE/ME)对于解释日本股票的横截面平均回报率也扮演很重要的角色。最后,Basu(1983)认为E/Pratio也能协助解释包含规模与市场β的美国股票横截面平均回报率。Ball(1978)提出E/P是一个在预期股票回报率下,可包括所有未知因子的代表变量;无论风险来源为何,E/P较高(价格相对于盈余低)的股票似乎也伴随着高风险与高回报率。Ball对于E/P代表变量的观点也适用于规模(ME)、财务杠杆及账面对市价比。这些变量被视为同衡量股票价格的方法,从股价中提取关于风险和预期回报率信息(Keim(1988)。更进一步看,E/P、市值、财务杠杆、及BE/ME比都可以看作是衡量价格的版本,故认为这些变量中其中某些对于预测平均回报率是多余的假设是合理的。本文的目标为衡量市场β、规模、E/P、财务杠杆、及账面对市价比在解释NYSE、AMEX、NASDAQ股票横截面平均回报率的联合解释能力。Black,Jensen,andScholes(1972)、Fama,andMacBeth(1973)发现:如SLB模型预测,平均股票回报率与β在过去到1969年期间,具有正的简单相关关系。就像Reinganum(1981)及LakonishokandShapiro(1986)的研究结果,本文发现在近期1963-1990这段期间,β与平均回报率间之相关性消失了,即使把β作为平均回报率的唯一解释变量。附录显示,在五十年间(1941-1990),β与平均回报率间之简单相关也很薄弱。简而言之,本文的检验并不支持SLB模型的基本预测:平均回报率与市场βs有正相关的关系。不像β与平均回报率间之简单相关,平均回报率与规模、财务杠杆、E/P及账面对市价比之间的单一变量关系很显著。在多元变量检验中,规模与平均回报率的负相关较包含其他变量下是非常显著的。账面与市价比及平均回报率间的正相关也持续对抗其他变量。而且,虽然规模效果吸引较多注意,账面对市价比与平均回报率的关系也扮演一个重要的角色。本文最后的结论:(a)β似乎无法协助解释横截面的股票平均回报率。(b)规模、账面对市价比似乎可吸收财务杠杆及E/P在平均股票回报率上的解释角色,至少在本文所选取的1963-1990样本期间是如此。假如资产被理性的定价,本文关于股票风险的结论是多面的。关于风险的其中一面可由规模、市值代表。另一面可由BE/ME(账面价值对市价比)代表。ChanandChen(1991)认为以BE/ME衡量的风险有可能是相对不良因子。他们主张公司的盈余展望与回报率的风险因子相关。市场预期未来展望不佳的公司、相较于未来展望乐观的公司会传递低股价的信号,高账面市价比、更高的预期股价回报率(伴随而来的为高资金成本)。然而,也有可能BE/ME比正好获得解开关于公司前景非理性市场的反复无常。无论基本经济因素为何,本文的主要结论是明确的。在1963-1990期间,两个简单的衡量变量,规模、账面对市价比(BE/ME),提供一个横截面平均股票回报率简单且有力的解释。下一部分本文讨论关于估计β的资料及方法。第二部分检视平均回报率与β、平均回报率与规模间的关系。第三部分检视E/P、财务杠杆、账面对市值比,对解释平均回报率上的角色。在第四部分及第五部分,总结、解释并讨论这些结果的应用。I.准备工作A.DATA使用所有非金融业的交易资料:(a)从CRSP取得NYSE、AMEX、及NASDAQ的回报率资料。(b)由CRSP提供的合并的COMPUSTAT年产业资料库中的损益表及资产负债表资料。对金融业而言可能是合理的高财务杠杆、但对其他非金融业公司也许是破产的可能,因此排除金融业。CRSP涵盖NYSE及AMEX股票回报率资料,直到1973年才加入NASDAQ的回报率。COMPUSTAT的资料从1962到1989年。1962年的起始日反映普通股的账面价值(COMPUSTATitem60),一般无法取得在1962年以前的资料。较重要的是,早些年COMPUSTAT的资料有严重的选择偏误:1962年以前的资料选择历史上规模大且成功的公司。为了确保会计变量数据比被用来解释的收益率数据更早的被人们知道,将所有会计年度期末t-1(1962-1989)的会计资料与t年七月至t+1年六月的回报率相匹配。六个月的间距在会计期末及回报率检验间是保守的。早先文献(Basu(1983))假设会计期末的三个月内,会计资料是可取得的。公司的确必须在90天内提供其报告给SEC,但平均有19.8%的公司未遵守。除此之外超过40%的以12月为会计年度末的公司没有遵守90天期限的规定,于三月三十一日提交报告,且其报告直到四月也未公开。(Alford,Jones,andZmijewski(1992))。使用一家公司在t-1年十二月期末的市值,计算t-1年其账面对市价比、财务杠杆、及盈余股价比,并使用t年六月的市值衡量其规模。因此,为了包含在t年七月的回报率检验,公司必须有CRSPt-1年十二月、t年六月的股价。也必须有t年七月前60个月中至少24个月的月回报率(以下讨论,为了估计pre-rankingβ)。样本公司必须有会计年度结束于t-1年的总账面价值(A)、账面权益(BE)、盈余(E)等COMPUSTAT资料。在E/P、BE/ME和杠杆比率中使用十二月的市值,对于会计年末不是在十二月末的公司是客观的,因为比率中分子的会计变量与分母的市值不一致。在会计期末使用ME也是有问题的;给定年度之横截面变动有部分是由于当年度的市场变动。举例来说,假设当年度股票皆为下跌,当年度较早衡量的比率将会低于当年度较晚衡量的比率。然而,会计比例中使用会计期末的ME相较于使用十二月的ME在回报率检验上几乎没有影响。最后,检验有不同会计期末的公司。采用t-1所有会计期末的会计资料与t年七月到t+1年六月的回报率资料做配对,会计资料与所配对的回报率间距因每间公司不同而不同。本文用小样本的以12月为会计期末的公司做过检验,得出了相似的结果。B.估计市场βs资产定价检验使用FamaandMacBeth(1973)年的横截面回归方法。每个月的横截面股票回报率对每个解释预期回报率的假设变量做回归。月回归斜率的时间序列方法,提供了不同的解释变量对平均股价的标准检验。既然规模、E/P、财务杠杆、及BE/ME可精确衡量单一股票,没有理由去使用Fama-MacBeth(FM)回归中使用投资组合,从而混淆这些变量所提供的信息。大多数过去的研究均使用投资组合,这是因为利用投资组合估计市场βs较为精确。本文采用的方法是估计投资组合βs,然后将投资组合的β分配到投资组合中的每支股票。这样允许本文在FM资产定价检验使用个别股票。B.1.β估计:细节每年六月,所有在CRSP的NYSE股票按照规模排序决定ME的NYSE十等分分点。NYSE、AMEX、NASDAQ股票必须有CRSP-COMPUSTAT的资料,然后将其分配至按照NYSE股票规模分点的十个投资组合中。(假如本文使用这三个交易所所有的股票决定其规模分类,当NASDAQ的股票被加入样本,多数的投资组合会只包含1973年后的小股票。)因为ChanandChen(1988)及其他相关研究证明,规模能使平均回报率及βs产生宽的范围,因此本文利用规模构建投资组合。ChanandChen只使用规模投资组合。产生的问题为规模与规模投资组合的βs高度相关(他们的数据为-0.988),因此资产定价检验对于个别规模中β对平均回报率的影响缺少检验力。为了使β的变动与规模无关,将依照规模分类的十个投资组合,依据个别股票pre-rankingβs的基础再细分为十个投资组合。pre-rankingβs是利用t年七月以前五年内24到60个月回报率估计的。仅使用NYSE股票中有t-1年COMPUSTAT-CRSP的资料的公司来设定β在每个规模中的十分位点。使用NYSE股票是为了确保β分点不会被1973年后NASDAQ的许多小公司股票所支配。利用满足COMPUSTAT-CRSP资料需求的股票设定β分点是为了保证在100个size-β投资组合中有公司存在。在六月,分配公司到的size-β投资组合之后,计算接下来从七月到次年六月共十二个月等值加权的投资组合月回报率。最后,将得到利用规模及pre-rankingβs所构建的100个投资组合从1963年7月到1990年12月的post-ranking月回报率。然后使用在100个投资组合中,每个投资组合post-ranking回报率的完整样本(330个月),及NYSE、AMEX、和1972年以后的NASDAQ等被一般被视为市场代表性的股票组成的CRSP价值加权投资组合来估计βs。本文也使用NYSE股票价值加权或等值加权的代表市场的投资组合来估计βs。这些βs使得下面所讨论有关β在解释平均回报率上的角色产生推论。本文用投资组合收益对现有及过去的月度市场回报率做回归后得出的斜率加总来估计β。(市场一个额外的提前和滞后对βs的总和几乎没有影响)βs的加总是为了校正不同步的交易(Dimson(1979))。FowlerandRorke(1983)表明当市场回报率自相关时,βs的加总是有偏的。1963年7月到1990年12月,每月市场回报率的一阶和二阶自相关分别是0.06及-0.05,都是距离0约1个标准差。如果Fowler-Rorkes相关性被使用,会导致βs细微的变动。因此本文依旧使用较为简单的βs加总。附录TableAI显示,使用加总的βs会使最小ME投资组合的βs大幅度增加;最大ME投资组合的βs小幅度减少。ChanandChen(1988)主张在检验SLB模型中用投资组合全期的β估计可以表现良好,即使投资组合中的实际βs会随着时间改变,如果βs是成比例的变动。()jtjtjk(1)jt是投资组合j在t时间的真实β,j是jt在时间t中的平均数,且β是j的平均数。附录主张公式(1)对于利用规模及β构建的投资组合(j)中,实际βs随着时间过去的变动,是一个好的估计式。对于顽固的β跟随者,必定会怀疑解释股票平均回报率中β的薄弱角色,本文的结果表明使用五年pre-r
本文标题:中文翻译TheCross-SectionofExpectedStockReturns
链接地址:https://www.777doc.com/doc-2775900 .html