您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 上财计量经济学课件5
第5章线性回归模型的应用线性回归模型的应用5.1多元线性回归分析与因素控制5.1.1多元回归与因素控制5.1.2缺失变量偏差5.1.3分割回归、F-W定理和影响消除5.2模型中变量的形式5.2.1对数模型和弹性5.2.2非线性自变量线性回归模型的应用5.3虚拟变量5.3.1虚拟变量的引入方式5.3.2引入多个虚拟变量5.4参数约束检验5.4.1参数约束检验方法5.4.2参数约束检验应用重要概念5.1多元线性回归分析与因素控制5.1.1多元回归与因素控制5.1.2缺失变量偏差5.1.3分割回归、F-W定理和影响消除5.1多元线性回归分析与因素控制5.1.1多元回归与因素控制经济数据的生成受很多因素的影响,要研究所关注因素对经济过程的影响,必须对其它因素的影响进行控制。例子5.1气温与冷饮消费不能丢掉相关变量AirCd,否则可能产生缺失变量内生性问题。uWhetherAirCdColdr2105.1多元线性回归分析与因素控制5.1.2缺失变量偏差丢掉相关变量,相当于将其放入误差项,如果丢掉的变量与其他解释变量相关,间接地就导致解释变量与误差项相关。的估计偏差:例子5.1(续)若回归的模型是:ˆ)ˆ(E)ˆ(BiasuWhetherColdr205.1多元线性回归分析与因素控制5.1.2缺失变量偏差例子5.1(续)且AirCd受Whether影响表示为:为上式中对的估计偏差的大小和方向由和共同决定。vWhetherAirCd1011222ˆ)ˆ(E)ˆ(Bias1ˆ11ˆ15.1多元线性回归分析与因素控制5.1.2缺失变量偏差结论1:缺失变量偏误设完整回归模型为,误差项满足外生性假设。丢掉变量后的模型为。与的关系可表示为回归,为的OLS估计。丢掉变量导致的OLS估计偏误为uQXXYkk110uQvXXYkk110QkiXi,,2,1,wXXQkk110iˆiQkiiii,,2,1,ˆ)ˆBias(5.1多元线性回归分析与因素控制5.1.2缺失变量偏差例子5.2货币需求量邹志庄的模型泰勒和纽豪斯的模型tttttuXXXY3322110ttttttuYXXXY1433221105.1多元线性回归分析与因素控制5.1.3分割回归、F-W定理和影响消除分割回归步骤:第一步:对以为因变量,、为自变量的回归模型进行OLS估计,得到回归残差;第二步:对以为因变量,、为自变量的回归模型进行OLS估计,得到回归残差;iiiiiuXXXY33221101X2X3XiiiivXXX332201ivˆY2X3XiiiiwXXY33220iwˆ5.1多元线性回归分析与因素控制5.1.3分割回归、F-W定理和影响消除分割回归步骤:第三步:对以为因变量,为自变量进行一元线性回归,的OLS估计便是的OLS估计。结论2:等于回归系数的OLS估计。(F-W定理)其直观意义即是:的回归系数的OLS估计,等于剔除和的影响后对的一元线性回归的回归系数OLS估计。iiiiiuXXXY3322110iwˆivˆiiivwˆˆˆ1ˆ11X2X3XY1X5.2模型中变量的形式5.2.1对数模型和弹性5.2.2非线性自变量5.2模型中变量的形式5.2.1对数模型和弹性•前面的模型中回归系数刻画的都是边际效应:解释变量变化以单位所能引起的被解释变量变化的单位。(不能消除单位的影响)•弹性则采用相应的百分比变化,不受单位的影响。•对数模型的回归系数表示的就是弹性•取对数能降低数据量级,宏观数据经常取对数。uXXXXYkkmmmm11110logloglog5.2模型中变量的形式5.2.2非线性自变量将加入的非线性自变量看做新的自变量,模型就还是线性的。•平方项:年龄对工资收入的影响、平均成本和产量的关系(例子5.4)、工资收入和阅历的关系•双曲线模型•逻辑曲线模型生灭过程(例子5.5))/1(10XY0),1/()1/(XeeYuXuX5.3虚拟变量5.3.1虚拟变量的引入方式5.3.2引入多个虚拟变量5.3虚拟变量•只取值0和1的自变量称为虚拟变量,也称为哑变量(dummyvariable)或者二值变量(binaryvariable)。•此处仅讨论解释变量取虚拟变量的情况,被解释变量取虚拟变量(二元选择模型)的情形留待第7章解释。5.3虚拟变量5.3.1虚拟变量的引入方式假设家庭消费支出受可支配收入影响,计量模型为iiiuIC10收入家庭01低高收入家庭D5.3虚拟变量5.3.1虚拟变量的引入方式加法方式代表不同收入家庭自发性消费的差异。加法方式引入的虚拟变量,用于体现不同对象对应模型的常数项变化。iiicdiuIDC1)(0)(cd5.3虚拟变量5.3.1虚拟变量的引入方式乘法方式代表不同收入家庭边际消费倾向的差异。乘法方式引入的虚拟变量,用于体现不同对象对应模型的斜率参数的变化。iiiisdiuIIDC1)(0)(sd5.3虚拟变量5.3.1虚拟变量的引入方式混合方式检验不同收入家庭消费模型是否有差异。iiisdicdiuIDDC)()(1)(00:)()(0sdcdH5.3虚拟变量5.3.2引入多个虚拟变量当属性分类超过两个时,需要引入多个虚拟变量来刻画不同类别对象的差异。结论3:虚拟变量的个数对于带截距项的模型,为表示某一属性不同类别引入虚拟变量时,虚拟变量的个数等于类别个数减去1。若虚拟变量数与类别数相同,则存在完全共线性,模型无法估计。5.3虚拟变量5.3.2引入多个虚拟变量例子5.6性别、高等教育和工资收入uDDYexpe322110uDDDDY21322110expeuDDDDDYexpeexpe121322110未受过高等教育受过高等教育011D女性男性012D5.4参数约束检验5.4.1参数约束检验方法5.4.2参数约束检验应用5.4参数约束检验5.4.1参数约束检验方法•原理:比较受约束的和不受约束的模型的残差平方和是否有明显差别检验统计量:无约束模型回归残差平方和:约束模型回归残差平方:无约束模型中解释变量个数:约束条件个数:样本容量:))1(/(SSR/)SSRSSR(ururrknqTrurSSRrSSRnkq5.4参数约束检验5.4.1参数约束检验方法结论4:参数约束检验统计量在约束条件(原假设)成立时,统计量服从自由度为q和(n-(k+1))的F分布。原假设:rT参数约束正确:0H5.4参数约束检验5.4.2参数约束检验应用参数约束检验应用冗余变量联合检验例子5.3高等教育规模-不同地区故认为不同地区的高等教育规模模型没有显著差异。uXXYkk1100:H10kqkuXXXXXDdDdY554433221122110lnlnlnln0:H210dd72.5)23,2(51.0))17(31/(6514.02/)6514.06802.0())1(/(SSR/)SSRSSR(05.0ururrFknqTr参数约束检验应用冗余变量联合检验例子5.3高等教育规模-不同地区EViews实现该检验:先对无约束模型进行回归,在结果输出界面点击View→CoefficientDiagnostics→RedundantVariablesTest-LikelihoodRatio…,在弹出的对话框中键入需要检验的冗余变量,点击OK参数约束检验应用冗余变量联合检验例子5.3高等教育规模-不同地区得到结果:参数约束检验应用函数形式检验RESET(RegressionEquationSpecificationErrorTest)步骤:1.对进行回归,得拟合值2.对进行回归3.对原假设进行检验uXXY22110uXXY2211022110ˆˆˆXXY322122110ˆˆYYXXY0:210H参数约束检验应用函数形式检验例子5.7工资模型中的高阶项uIQmarriedexpereducagelwage543210:I3121543210:IIlwageflwagefIQmarriedexpereducagelwage)413,2(515.2))17(421/(26.492/)26.4986.49())1(/(SSR/)SSRSSR(05.0ururrFknqTr参数约束检验应用函数形式检验例子5.7工资模型中的高阶项EViews实现该检验:对原模型进行OLS回归,在回归结果界面点击View→StabilityDiagnostics→RamseyRESETTest在弹出的对话框中键入需要添加的拟合项阶数参数约束检验应用函数形式检验例子5.7工资模型中的高阶项得到结果:参数约束检验应用线性约束检验例子5.8规模报酬不变生产函数)',...,,(,)',...,(,)',...,(,'212121qqqXXXXX22110XXY0,0,KALPuePlnYLln1XKln2XAln012参数约束检验应用线性约束检验例子5.8规模报酬不变生产函数EViews实现该检验:在估计结果界面点击View→CoefficientDiagnostics→WaldTest-CoefficientRestrictions…,在弹出窗口键入线性约束)21,1(023.0))12(23/(074569.01/)074569.0074652.0())1(/(SSR/)SSRSSR(05.0ururrFknqTr参数约束检验应用线性约束检验例子5.8规模报酬不变生产函数得到结果:参数约束检验应用参数断点检验(BreakpointTest)模型参数在某处发生结构性变化设有两组样本,样本容量分别为和,设第一组数据的回归模为,第二组样本的回归模型为,将两个数据集合合并后采用的回归模型为1n2n)1()1(1)1(1)1(0uXXYkk)2()2(1)2(1)2(0uXXYkkuXXYkk110kiii,,1,0,:H)2()1(0参数约束检验应用参数断点检验(BreakpointTest)步骤:1.用第一组数据对回归,得出残差平方和2.用第二组数据对回归,回归残差为,无约束残差平方和为3.用合并数据对回归,得约束的残差平方和,约束条件个数)1()1(1)1(1)1(0uXXYkk1SSR)2()2(1)2(1)2(0uXXYkk2SSR21urSSRSSRSSRuXXYkk110rSSR1kp参数约束检验应用参数断点检验(BreakpointTest)步骤:4.定义检验统计量)])1(2[,1(~)]1(2/[)SSRSSR()1/()]SSRSSR([SSR2121rknkFknkTt参数约束检验应用参数断点检验(BreakpointTest)若样本为时间序列,则称之为邹检验(ChowBreakpointTest)例子5.9贝塔系数(股价与指数的关系)tttttuYXXY111参数约束检验应用参数断点检验(BreakpointTest)例子5.9贝塔系数(
本文标题:上财计量经济学课件5
链接地址:https://www.777doc.com/doc-2784613 .html