您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 七年级下册数学知识要点
1合江县望龙中学人教版初中数学知识要点汇编七年级下册第五章相交线与平行线一、知识网络结构二、知识要点1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,与互为邻补角。+=180°;+=180°;+=180°;+=180°。4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;=。5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行 :平行于同一条直线判定直线平行 :同旁内角互补,两判定线平行 :内错角相等,两直判定线平行 :同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线43214321____________________________:图11342图21342ab2合江县望龙中学人教版初中数学知识要点汇编七年级下册性质3:如图2所示,当a⊥b时,====90°。点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。图3中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行线的性质:性质1:两直线平行,同位角相等。如图4所示,如果a∥b,则=;=;=;=。性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则=;=。性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+=180°;+=180°。性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。8、平行线的判定:判定1:同位角相等,两直线平行。如图5所示,如果=或=或=或=,则a∥b。判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b。判定3:同旁内角互补,两直线平行。如图5所示,如果+=180°;+=180°,则a∥b。判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。9、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的图3a57861342bc图4a57861342bc图5a57861342bc3合江县望龙中学人教版初中数学知识要点汇编七年级下册命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。平移后,新图形与原图形的形状和大小完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。第六章平面直角坐标系一、知识网络结构用坐标表示平移用坐标表示地理位置坐标方法的简单应用平面直角坐标系有序数对平面直角坐标系二、知识要点1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐标0,纵坐标0;⑤坐标原点:横坐标0,纵坐标0。(填“”、“”或“=”)8、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a|。9、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。10、点P(2,3)到x轴的距离是;到y轴的距离是;点P(2,3)关于x轴对称的点坐标为4合江县望龙中学人教版初中数学知识要点汇编七年级下册(,);点P(2,3)关于y轴对称的点坐标为(,)。11、如果两个点的横坐标相同,则过这两点的直线与y轴平行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。12、平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点P(a,b)在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即a=b;如果点P(a,b)在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即a=-b。13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点P(2,3)向左平移2个单位后得到的点的坐标为(,);将点P(2,3)向右平移2个单位后得到的点的坐标为(,);将点P(2,3)向上平移2个单位后得到的点的坐标为(,);将点P(2,3)向下平移2个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为(,);将点P(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为(,);将点P(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为(,)。第七章三角形一、知识网络结构外角:外角和内角:内角和有关角对角线边有关线段多边形外角:外角和内角:内角和三角形的有关角角平分线中线高边三角形的有关线段三角形5合江县望龙中学人教版初中数学知识要点汇编七年级下册二、知识要点1、由不在同一直线上的三条线段首尾顺次连结组成的图形叫三角形。三角形用“△”符号表示。2、三角形按角来分可以分为:锐角三角形(三个角都为锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角);三角形按边来分可以分为:不等边三角形(三边都不相等)、等腰三角形(有两边相等),其中等腰三角形又分为:底与腰不相等的等腰三角形和底与腰相等的等腰三角形(等边三角形)。3、过三角形的一个顶点向它的对边作垂线,这个顶点和垂足之间的线段叫三角形的高;连结三角形的一个顶点和它对边中点的线段叫三角形的中线;三角形的一个内角的平分线与对边的交点,到这个内角顶点之间的线段叫三角形的角平分线。三角形的一边与另一边的延长线所组成的角叫三角形的外角。4、一个三角形有三个顶点,三条边,三个内角,六个外角,三条高,三条中线,三条角平分线。任意三角形三条中线的交点都在它的内部;任意三角形三条角平分线的交点都在它的内部;锐角三角形三条高的交点在它的内部;直角三角形三条高的交点在它的直角顶点;钝角三角形三条高的交点在它的外部。5、三角形的性质:①三角形任意两边之和大于第三边,三角形任意两边之差小于第三边;②三角形具有稳定性(不易变形);③三角形的内角和为180°;④三角形的外角和为360°(每个顶点处取一个外角);⑤三角形的一个外角等于与它不相邻的两个内角的和;⑥三角形的一个外角大于与它不相邻的任何一个内角。6、如图6所示,AD是△ABC的一条高,BE是△ABC的一条角平分线,CF是△ABC的一条中线,∠3是△ABC的一个外角,由三角形的性质可得:①AB+AC>BC,AB+BC>AC,BC+AC>AB,或AB-AC<BC,AB-BC<AC,BC-AC<AB;②∠BAC+∠ABC+∠ACB=180°;③∠3=∠BAC+∠ABC;④∠3>∠BAC,∠3>∠ABC;⑤∠ADC=∠ADB=90°;⑥∠1=∠2;⑦AF=BF=21AB或AB=2AF=2BF。7、在同一平面内,由一些线段(至少三条)首尾顺次连结组成的图形叫多边形。多边形相邻的两边组成的角叫多边形的内角(简称多边形的角),多边形的一边与它的邻边的延长线组成的角叫多边形的外角。连结多边形不相邻的两个顶点的线段叫多边形的对角线。各个角都相等,各条边都相等的多边形叫正多边形。正多边形的每个外角都相等。8、从n边形(n≥3)的一个顶点处可以引出)3(n条对角线,这些对角线将原多边形分成)2(n个三角形。一个n边形(n≥3)共有2)3(nn条对角线。n边形(n≥3)的内角和为180)2(n,任意多边形的外角和都为360°。图6123EFGCDBA6合江县望龙中学人教版初中数学知识要点汇编七年级下册第八章二元一次方程组一、知识网络结构二、知识要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为cbyax(cba、、为常数,并且00ba,)。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示
本文标题:七年级下册数学知识要点
链接地址:https://www.777doc.com/doc-2798477 .html