您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 《微生物生理学》论文
生物固氮摘要具有生物固氮能力的仅限于原核生物,即细菌和蓝绿藻。通过对生物固氮机制、生物固氮微生物与生物固氮微生物和植物之间的关系的研究,将生物固氮作用应用于农业定将在增加作物氮源供应、培肥地力、减少化肥用量、提高作物产量,以及促进农业生产的持续发展和环境保护方面发挥其效力。关键词生物固氮种类和特点固氮机制应用近20年来,生物固氮研究异常活跃,已成为世界范围的重要课题。纵观当前生物固氮研究的内容,大致有以下三个方面,即固氮资源的有效利用,固氮的遗传工程和化学模拟固氮。在固氮资源的有效利用方面,许多国家都在大力发展豆科作物,通过其有效的共生固氮体系,增加生物氮源,改善土壤肥力,以促进农业增产。此外,接种根瘤菌提高豆科作物产量已在全世界范围内使用。在稻田里接种和放养红萍和固氮蓝藻,既能增加土壤中生物氮数量,又能提高水稻的产量。这种共生固氮途径的有效利用,在我国和东南亚一些国家已有悠久的历史。随着分子生物学的进展,固氮的遗传工程受到了广泛重视,已成为目前最活跃的研究领域。1生物固氮1.1生物固氮是生物界的一个特有的生化过程,生物固氮的实质是在常温常压水溶液中,通过生物体酶的催化,由还原剂将游离的氮气还原为氨的过程。1.2生物固氮与工业上的化学固氮相比,有以下四个方面的优点:①生物固氮过程无需在高温高压下进行。在常温常压下依靠微生物本身的固氮酶催化作用,实现将氮分子转化成氨,供植物吸收利用。虽然生物固氮也是一个消耗能量的过程,但是提供能量的是植物,能量主要靠植物以太阳光为能源的光合作用。与化学固氮相比成本低廉。②质优。以豆科植物和根瘤菌共生体系来看,植物向根瘤菌提供能量,存在于根瘤中的根瘤菌(以类菌体形态存在)将氮分子转化成氨,然后通过氨同化系统迅速将氨转化成谷氨酰胺一类的优质氮化合物被植物吸收。而且共生体系固定的氮大部分被输送到籽粒中去,这也是豆科植物种子蛋白质含量高的一个重要原因。③利用率高。化肥氮施入到田间,植物所能吸收利用的效率在20%~60%,其余的要么形成气态氮释放到空气中,要么随水淋溶流失。而生物固氮,尤其是共生固氮体系,大部分都被农作物直接吸收利用,少量的随着分泌过程和根瘤衰老破溃,留在土壤中给下一季作物利用。表现了十分高的利用率。④不污染环境。氮肥的大量使用而转化成的硝态氮,有相当一部分淋溶,造成溪流、地下水和海洋的硝酸盐污染。另一方面施入土壤中的化学氮,由于反硝化作用,释放出的氮气破坏正常的氮素循环。而生物固氮则不存在这个问题。2固氮微生物的种类和特点固氮微生物多种多样,不同的划分标准满足了不同的要求。从它们的生物固氮形式来分,有自生固氮、联合固氮、和共生固氮3种。2.1自生固氮微生物自生固氮微生物是指能够在自由生活状态下固氮的微生物总称。在自然界,自生固氮微生物种类很多,分散地分布在细菌和蓝细菌的不同科、属和不同的生理群中;并大致可以分为光合细菌和非光合细菌两类。前者如红螺菌、红硫细菌和绿硫细菌等,其中的某些种类可与其它微生物联合而相互有利;后者的种类很多。根据非光合细菌的自生固氮菌对氧的需求,可以分为厌氧的细菌如梭状芽胞杆菌;需氧细菌如自生固氮菌、贝捷林克氏固氮菌、固氮螺菌等;以及兼性细菌如多粘芽胞杆菌、克鲁伯氏杆菌、肠杆菌等。自生固氮微生物中的某些种类,在有些情况下可以与植物进行联合固氮。一般地,自生固氮微生物固定的氮素满足本身生长繁殖需要以后就不再固氮了,多余的氮反过来会抑制它们自身的固氮系统。同时,它们固氮效率也比较低。据测定,每消耗1克碳水化合物,自生固氮微生物固定10毫克氮,而共生固氮的根瘤菌则可以固定270毫克氮。所以,这个类群的微生物从固氮量的角度衡量,对作物的氮素供应的贡献并非很大。许多试验结果证明,这类微生物所产生的各种激素和其它活性物质是促进作物生长的主要因素之一。2.2联合固氮微生物联合固氮微生物有些自生固氮微生物在特定植物根际环境中生长、繁殖比非根际土壤中旺盛得多,这是由于植物根系的分泌物和脱落物提供能源物质,固氮微生物利用这些能源物质生活和固氮,这种互利关系称之为联合固氮。联合固氮体系最先是在雀稗和雀稗固氮菌之间发现,后来发现小麦、水稻和C4作物如甘蔗、玉米、高粱等禾本科植物亦存在联合固氮体系。能够进行联合固氮的微生物种类较多,似乎没有什么特异性,有些微生物既可以在自生条件下进行自生固氮作用,又能在田间与一些禾本科作物进行联合固氮作用。已经报道过的联合固氮的主要微生物种类有:浸麻芽胞杆菌、多粘芽胞杆菌、巴西固氮螺菌、含脂固氮螺菌、克鲁伯氏杆菌、阴沟肠杆菌、产气肠杆菌和粪产碱杆菌等。与共生固氮相比,联合固氮微生物与植物之间的关系不紧密,双方也没有共同的组织结构,因而固氮效率也不可能高。目前,对于联合固氮体系的固氮量很难有一个比较准确的估计,一般认为每亩地每年约为0.5~1斤纯氮。2.3共生固氮微生物共生固氮微生物是指能与宿主植物形成特定固氮组织结构的一类微生物。它们彼此生活在一起,植物向微生物提供光合产物供微生物固氮需要,微生物则向植物提供氮素营养,双方互相有利。以豆科植物--根瘤菌共生体系来说,由于有根瘤组织作为它们的共生结构,共生效率是最高的。其原因是这种共生体系满足了上述所说的生物固氮的条件。已知的比较清楚的共生体系除了豆科植物--根瘤菌共生体系外,还有非豆科植物--固氮放线菌体系和红萍--固氮蓝藻共生体系。与相应的豆科植物共生固氮的根瘤菌很多,迄今从豆科植物根瘤中分离出来并进行过研究的约有100多种,在生产上应用的种类不足1/5。在分类上确定了分类地位的现在有5个属,它们分别是:根瘤菌属(Rhizobium)、慢生根瘤菌属(Bradyrhizobi-um)、中华根瘤菌属(Sinorhizobium)、固氮根瘤菌属(Azorhizobium)和中慢生根瘤菌属(Mesorhizobium)。每个根瘤菌属包括至少1个种。和上述的自生固氮和联合固氮比较,共生固氮效率高,固氮量多,对于人类的意义和农牧业生产的作用也最大。迄今研究最为清楚、应用最多的是豆科植物根瘤菌共生固氮体系,据测定,一般每年每亩固定纯氮约为13.3公斤,约折合每亩地每年固定标准化肥130斤,且几乎全部被利用。3固氮机制固氮是还原分子氮的过程,所以需要消耗大量的能量和还原力。固氮酶对氧极其敏感,所以固氮需要有严格厌氧的微环境。3.1固氮分为以下几个阶段:(1)固氮酶的形成还原型吡啶核昔酸的电子经载体铁氧还蛋白或黄素氧还蛋白(flaVodoxin,F1d)传递到组分Ⅱ的铁原子上形成还原型组Ⅱ,它先与ATP—Mg结合生成变构的Ⅱ—Mg-ATP复合物;然后再与此时已与分子氯结合的组分I一起形成1:1的复合物——固氮酶;(2)固氮阶段固氮酶分子的一个电子从组分Ⅱ—Mg—ATP复合物转移到组分I的铁原子上,由此再转移给钼结合的活化分子氮。通过6次这样的电子转移,将1分子氮还原成2分子NH3。组分Ⅱ—Mg—ATP复合物转移掉电子以后恢复成其氧化型,同时ATP水解成为ADP十Pi。实际上,在1分子氮还原形成2分子NH3的过程中有8个电子转移,其中的2个电子以氢气的形式用去,但其原因尚不清楚,不过有证据表明,H2的产生是固氮酶反应机制中一个不可分割的组成部分。3.2好氧固氮苗防止氧伤害其固氮酶的机制固氮酶对氧极其敏感,因此固氮作用必须在严格的厌氧条件下进行。这对于厌氧固氮菌当然不成问题。但是大多数固氮菌却是必须在有氧条件下才能生活的好氧菌,它们是如何解决需氧但又必须防止氧伤害其固氮酶这个矛盾的呢?已知有以下一些保护固氮酶免受氧伤害的机制。3.2.1固氮菌保护固氮酶的机制(1)呼吸保护固氮菌属的许多细菌以其较强的呼吸强度迅速耗去固氮部位周围的氧,以使固氮酶处于无氧的微环境中而免受氧的伤害。(2)构象保护褐球固氮菌等有一种起着构象保护功能的蛋白质——Fe—Ⅱ蛋白质H,在氧分压增高时,它与固氮酶结合,此时,固氮酶构象发生改变并丧失固氮活力;一旦氧浓度降低,该蛋白便自酶分子上解离,固氮酶恢复原有的构象和固氮能力。3.2.2蓝细菌保护固氮酶的机制进行产氧光合作用的蓝细菌普遍有固氮能力,其具有独特的保护固氮酶机制。分化有异形胞的丝状细菌在异形胞中进行固氮作用。异形胞是部分蓝细菌适应于在有氧条件下进行固氧作用的特殊细胞。它有很厚的细胞壁,缺乏氧光合系统E,而且有高的脱氢酶和氢酶活力,这些特性使异形胞保持着高度的无氧或还原状态,固氮酶不会受氧的伤害。此外,异形胞还有很高的超氧化物歧化酶活力,有解除氧毒害的功能;异形胞的呼吸强度也高于邻近的营养细胞。没有异形胞分化的蓝细菌有的将固氮作用与光合作用分开进行(黑暗下固氯,光照下进行光合作用),如织线蓝细菌属(Plectonema)等;有的在束状群体中央失去光合系统R的细胞中进行固氮作用,如束毛蓝细菌属(Trichodesmium);有的则通过提高细胞内过氧化物酶或超氧化物歧化酶活力以解除氧毒害,如粘球蓝细菌属(Gloeocapsa)等,以保护固氮酶。3.2.3根瘤茵保护固氮酶的机制与豆科植物共生的根瘤菌以类茵体(bacteroids)形式生活在豆科植物根瘤中,根瘤不仅提供根瘤菌以良好的营养环境,还为根瘤茵固氮酶提供免受氧伤害的场所。类菌体周围有类菌体周膜(peribacterialmembrane,pmb)包着,膜上有一种能与氧发生可逆性结合的蛋白——豆血红蛋白(1e8haemoglobin,pmb),它与氧的亲合力极强,起着调节根瘤中膜内氧浓度的功能,氧浓度高时与氧结合;氧浓度低时又可释放出氧:豆血红蛋白(Lb)十O2→加氧豆血红蛋白(Lb.02)。从而既保证了类菌体生长所需的氧,又不致对其固氮酶产生氧伤害。非豆科植物共生根瘤茵(如共生在糙叶山麻黄根瘤中的既豆根瘤苗)依靠非豆科植物所含的植物血红蛋白(具有与豆血红蛋白类似功能的蛋白)保护着固氮酶免受氧伤害。共生在赤杨、杨梅和山麻黄等非豆科植物根瘤中的弗兰克氏属(Frankia)的放线菌在其营养菌丝末端膨大的球形囊——泡囊中进行固氮作用。泡囊与蓝细菌的异形胞相似,有着保护固氮酶免受氧伤害的功能。3固氮微生物的应用有关这方面的研究目前主要在以下几方面进行探索:一是培育新的固氮微生物,以提高固氮效率或赋予非固氮微生物以固氮能力;二是改变结瘤的识别过程或将固氮基因转移到根瘤病杆菌中,以使非豆科植物结瘤固氮,扩大固氮作物的范围;三是应用遗传工程培育不依赖固氮微生物的自主固氮的植物。这些研究如能成功,将对农业生产产生深刻的影响。固氮微生物由于具有固氮酶可以在常温常压下将氮气转变成氨,而工业合成氨却要在高温高压下进行。为了改变这种状况,科学家正寻找像固氮酶那样能在常温下将氮变成氨的催化剂。这就是化学模拟固氮。化学模拟固氮的研究,将为化学氮肥生产提供新型的催化剂,这对现代氮肥工业以及农业生产都具有极其重要的意义。4.1固氮菌类肥料(1)筛选或用遗传改造手段提高自生固氮菌和联合固氮菌的抗氨和泌氨的能力,降低或克服氨对固氮菌固氮作用的反馈抑制,为作物和土壤提供更多的固氮量。(2)联合固氮关系的紧密化和有效化联合作用是指固氮微生物在禾本科等植物根际、根表籍趋化和营养关系,两者所形成的一种松散、互利的形式。这种联合固氮不足之处一是特异性差,联合关系不稳定;另一为固氮能力不高和固氮量少,固氮作用受铵的反馈抑制。因而自然界中存在的这一体系对作物的氮素贡献有限。如果可以通过必要的方法和手段,克服联合固氮中存在的主要限制因素,将能充分利用这些资源,为禾谷类作物提供更多的氮素。为提高这类微生物对作物氮的贡献,第一种有效方法是导入特定的凝集素基因(lectingenes),使微生物与作物联合关系更加紧密。第二种是植物促生菌(PGPB:PlantGrowthPromotingBacteria)对联合更多的作用,因为它可分泌对植物根系有刺激作用植物激素,有利于根系的大量繁殖和吸收更多的养分。从而加强植物与微生物之间的联合关系。第三,筛选或用基因工程构建可分泌铵离子和有氨存在下仍然能固氮的菌株。最近已有文献报道分离得到这类固氮的突变株,这就可克服常见的联合固氮菌如固氮螺菌(Azospi
本文标题:《微生物生理学》论文
链接地址:https://www.777doc.com/doc-280744 .html