您好,欢迎访问三七文档
数学备课吧————免费下载数学备课吧——课件,试卷,教案,论文共4万多个资料供您免费下载三角函数线及其应用教学目标1.使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题.2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力.3.强化数形结合思想,发展学生思维的灵活性.教学重点与难点三角函数线的作法与应用.教学过程设计一、复习师:我们学过任意角的三角函数,角α的正弦、余弦、正切、余切、正割、余割是如何定义的?生:在α的终边上任取一点P(x,y),P和原点O的距离是r(r>0),那么角α的六个三角函数分别是(教师板书)师:如果α是象限角,能不能根据定义说出α的各个三角函数的符号规律?生:由定义可知,sinα和cscα的符号由y决定,所以当α是第一、二象限角时,sinα>0,cscα>0;当α是第三、四象限角时,sinα<0,cscα<0.cosα和secα的符号由x决定,所以当α是第一、四象限角时,cosα>0,secα>0;当α是第二、三象限角时,cosα<0,secα<0.而tanα,cotα的符号由x,y共同决定,当x,y同号时,tanα,cotα为正;当x,y异号时,tan数学备课吧————免费下载数学备课吧——课件,试卷,教案,论文共4万多个资料供您免费下载α,cotα为负.也就是说当α是第一、三象限角时,tanα>0,cotα>0;当α是第二、四象限角时,tanα<0,cotα<0.师:可以看到,正弦值的正负取决于P点纵坐标y,余弦值的正负取决于P点的横坐标x,而正切值的正负取决于x和y是否同号,那么正弦、余弦、正切的值的大小与P点的位置是否有关?生:三角函数值的大小与P的位置无关,只与角α的终边的位置有关.师:既然三角函数值与P点在角α的终边上的位置无关,我们就设法让P点点位于一个特殊位置,使得三角函数值的表示变为简单.二、新课师:P点位于什么位置,角α的正弦值表示最简单?生:如果r=1,sinα的值就等于y了.师:那么对于余弦又该怎么处理呢?生:还是取r=1.师:如果r=1,那么P点在什么位置?生:P点在以原点为圆心,半径为1的圆上.师:这个圆我们会经常用到,给它起个名字,叫单位圆,单位圆是以原点为圆心,以单位长度为半径的圆.(板书)1.单位圆师:设角α的终边与单位圆的交点是P(x,y),那么有sinα=y,cosα=x.师:我们前面说的都是三角函数的代数定义,能不能将正弦值、余弦值等量几何化,也就是用图形来表示呢?因为数形结合会给我们的研究带来极大的方便,请同学们想想,哪些图形与这些数值有关呢?(同学可能答不上来,教师给出更明确的提示.)师:sinα=y,cosα=x,而x,y是点P的坐标,根据坐标的意义再想一想.师:对点来说,是它的位置代表了数,点本身并不代表数.能不能找到一个图形,自身的度量就代表数?数学备课吧————免费下载数学备课吧——课件,试卷,教案,论文共4万多个资料供您免费下载生:可以用面积,比如一个正数可以对应着一个多边形的面积,每一个多边形的面积对应着唯一一个正数.师:很好.但这是一个二维的图形,而且多边形的边数也不确定,我们还应遵循求简的原则.有没有简单的图形呢?生:是不是能用线段的长度来表示?师:说说你的理由.生:线段的长度与正数是一一对应的,所以每一个正数可以用一条线段来作几何形式.师:正数可以这样去做,零怎么办呢?能用线段来表示吗?生:(非常活跃)当然行了,让线段两个端点重合,线段长就是零了.师:可以画这样一个示意图,线段一个端点是A,另一个端点是B,当A,B重合时,我们说AB是0;当A,B不重合时,我们说AB是一个正实数.那么负数怎么办呢?能不能想办法也用线段AB表示?生:线段的长度没有负数.生:我能不能这样看,A点在直线l上,B点在l上运动,如果B在A的右侧,我就说线段AB代表正数;如果B和A重合,就说线段AB代表0;如果B在A的左侧,就说线段AB代表负数.(教师不必理会学生用词及表述的漏洞.主要是把学生的注意力吸引到对知识、概念的发现上来.)师:正数与正数不都相等,负数和负数也不都相等,你只是规定了正负还不够吧?!生:可以再加上线段AB的长度.这样所有的实数都能对应一条线段AB,以A为分界点,正数对应的点B在A的右侧,而且加上长度,B点就唯一了.师:他的意见是对线段也给了方向.与直线规定方向是类似的.那么如何建立有向线段与数的对应关系?(板书)2.有向线段数学备课吧————免费下载数学备课吧——课件,试卷,教案,论文共4万多个资料供您免费下载师:顾名思义,有方向的线段(即规定了起点与终点的线段)叫做有向线段,那么如何建立有向线段与数的对应关系呢?这需要借助坐标轴.平行于坐标轴的线段可以规定两种方向.如图2,线段AB可以规定从点A(起点)到点B(终点)的方向,或从点B(起点)到点A(终点)的方向,当线段的方向与坐标轴的正方向一致时,就规定这条线段是正的;当线段的方向与坐标轴的正方向相反时,就规定这条线段是负的.如图中AB=3(长度单位)(A为起点,B为终点),BA=-3(长度单位)(B为起点,A为终点),类似地有CD=-4(长度单位),DC=4(长度单位).师:现在我们回到刚才的问题,角α与单位圆的交点P(x,y)的纵坐标恰是α的正弦值,但sinα是可正、可负、可为零的实数,能不能找一条有向线段表示sinα?生:找一条有向线段跟y一致就行了,y是正的,线段方向向上,y是负的,线段方向向下,然后让线段的长度为|y|.师:理论上很对,到底选择哪条线段呢?我们不妨分象限来看看.生:如果α是第一象限的角,过P点向x轴引垂线,垂足叫M(无论学生用什么字母,教师都要将其改为M),有向线段MP为正,y也是正的,而且MP的长度等于y,所以用有向线段MP表示sinα=y.数学备课吧————免费下载数学备课吧——课件,试卷,教案,论文共4万多个资料供您免费下载(图中的线段随教学过程逐渐添加.)生:如果α是第二象限角,sinα=y是正数,也得找一条正的线段.因为α的终边在x轴上方,与第一象限一样,作PM垂直x轴于M,MP=sinα.师:第一、二象限角的正弦值几何表示都是MP,那么第三、四象限呢?注意此时sinα是负值.生:这时角α的终边在x轴下方,P到x轴的距离是|y|=-y.所以还是作PM垂直x轴于M,MP方向向下,长度等于-y,所以sinα=y.师:归纳起来,无论α是第几象限角,过α的终边与单位圆的交点P作x轴的垂线,交x轴于M,有向线段MP的符号与点P的纵坐标y的符号一致,长度等于|y|.所以有MP=y=sinα.我们把有向线段MP叫做角α的正弦线,正弦线是角α的正弦值的几何形式.(板书)3.三角函数线(1)正弦线——MP师:刚才讨论的是四个象限的象限角的正弦线,轴上角有正弦线吗?数学备课吧————免费下载数学备课吧——课件,试卷,教案,论文共4万多个资料供您免费下载生:当角α的终边在x轴上时,P与M重合,正弦线退缩成一点,该角正弦值为0;当角α终边与y轴正半轴重合时,M点坐标为(0,0),P(0,1),MP=1,角α的正弦值为1;当α终边与y轴负半轴重合时,MP=-1,sinα=-1,与象限角情况完全一致.师:现在来找余弦线.生:因为cosα=x(x是点P的横坐标),所以把x表现出来就行了.过P点向y轴引垂线,垂足为N,那么有向线段NP=cosα,NP是余弦线.师:具体地分析一下,为什么NP=cosα?生:当α是第一、四象限角时,cosα>0,NP的方向与x轴正方向一致,也是正的,长度为x,有cosα=NP;当α是第二、三象限角时,cosα<0,NP也是负的,也有cosα=NP.师:这位同学用的是类比的思想,由正弦线的作法类比得出了余弦线的作法,其他同学有没有别的想法?生:其实有向线段OM和他作的有向线段NP方向一样,而且长度也一样,也可以当作余弦线.师:从作法的简洁及图形的简洁这个角度看,大家愿意选哪条有向线段作为余弦线?生:OM.(板书)(2)余弦线——OM师:对轴上角这个结论还成立吗?(学生经过思考,答案肯定.)师:我们已经得到了角α的正弦线、余弦线,它们都是与单位圆的弦有关的线段,能不能找到单位圆中的线段表示角α的正切呢?生:肯定和圆的切线有关系(这里有极大的猜的成分,但也应鼓励学生.)坐标等于1的点,这点的纵坐标就是α的正切值.师:那么横坐标得1的点在什么位置呢?数学备课吧————免费下载数学备课吧——课件,试卷,教案,论文共4万多个资料供您免费下载生:在过点(1,0),且与x轴垂直的直线上.生:这条直线正好是圆的切线.(在图3-(1)中作出这条切线,令点(1,0)为A.)师:那么哪条有向线段叫正切线呢?不妨先找某一个象限角的正切线.生:设α是第一象限角,α的终边与过A的圆的切线交于点T,T的横坐标是1,纵坐标设为y′,有向线段AT=y′,AT可以叫做正切线.师:大家看可以这样做吧?!但第二象限角的终边与这条切线没有交点,也就是α的终边上没有横坐标为1的点.生:可以令x=-1,也就是可以过(-1,0)再找一条切线,在这条切线上找一条有向线段表示tanα.师:我相信这条线段肯定可以找到,那么其他两个象限呢?生:第三象限角的正切线在过(-1,0)的切线上找,第四象限角的正切线在过(1,0)的切线上找.师:这样做完全可以,大家可以课下去试,但我们还是要求简单,最好只要一条切线,我们当然喜欢过A点的切线(因为这条直线上每个点的横坐标都是1),第一、四象限角与这条直线能相交,AT是正切值的反映,关键是第二、三象限的角.(如果学生答不出来,由教师讲授即可.)师(或生):象限角α的终边如果和过A点的切线不相交,那么它的反向延长线一定能和这条切线相交.因为△OMP∽△OAT,OM与MP同号时,OA与AT也同号;OM与MP异号时,OA与AT也异号,(板书)(3)正切线——AT师:的确像刚才同学们说的,正切线确实是单位圆的切线的一部分,那么轴上角的正切线又如何呢?注意正切值不是每个角都有.生:当角α终边在x轴上时,T和A重合,正切线退缩成了一个点,正切值为0;当角α终边在y轴上时,α的终边与其反向延长线和过A的切线平行,没有交点,正切线不存在,这与y轴上角的正切值不存在是一致的.数学备课吧————免费下载数学备课吧——课件,试卷,教案,论文共4万多个资料供您免费下载师:可以看到正切线的一个应用——帮助我们记忆正切函数的定义域.现在我们归纳一下任意角α的正弦线、余弦线、正切线的作法.设α的终边与单位圆的交点为P,过P点作x轴的垂线,垂足为M,过A(1,0)点作单位圆的切线(x轴的垂线),设α的终边或其反向延长线与这条切线交于T点,那么有向线段MP,OM,AT分别叫做角α的正弦线、余弦线、正切线.利用三角函数线,我们可以解决一些简单的有关三角函数的问题.(板书)4.三角函数线的应用例1比较下列各组数的大小:分析:三角函数线是一个角的三角函数值的体现,从三角函数线的方向看出三角函数值的正负,其长度是三角函数值的绝对值.比较两个三角函数值的大小,可以借助三角函数线.(由学生自己画图,从图中的
本文标题:三角函数线教案
链接地址:https://www.777doc.com/doc-2808468 .html