您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 《数字电子技术基础》第一章习题答案
1第一章逻辑代数及逻辑函数的化简1.1、用布尔代数的基本公社和规则证明下列等式。1、DBADCDABDBA证:左边=DBADCDBDBADCDAADBDBA=右边2、CABDACABDBADAB证:左边=CABDACABBBDA)(=右边3、DBBDACBDDBC))((证:左边=DBCBCDABDADBCBDACBDBC))((=右边4、DBCBBCDADCAACD证:左边=BDBDAAD=右边5、))()((ACCBBACABCAB证:右边=ABBCACACBACACBCBACAB))(())((=左边6、ACCBBACBAABC证:右边=CBAABCACBCCABAACCBBAACCBBA))(())()((7、ACCBBAACCBBA证:左边=ACCBBACBBAACACCBBA=右边8、)())()()((XWYZZYZYXWZY证:左边=)())()((XWYZZYXWYZYZ=右边9、0))()()((BABABABA证:左边=0))((AABABAAABBAA=右边10、ADDCCBBADCCDCBBCBAAB))()((证:左边=DCBAABCDDCCDCBAABC))((右边=))()()((ADDCCBBAADDCCBBA=DCBAABCDADCADCBCCABA))((=左边11、CBAA⊙B⊙C证:左边=CBAABCCBACBACBAABCBABA)()(=)()(CBCBACBBCAA⊙B⊙C=右边12、如果YBXABYAXBA,证明0证:ABBAYXXBYABAYBXABYAX))((=XAYBABYXXBYABA=XAYBXAYBABBA=右边1.2、求下列函数的反函数。1、BAABF解:))((BABAF2、CBACBACABABCF解:))()()((CBACBACBACBAF3、)(DACCBBAF解:))()((DACCBBAF4、))()((BADCCDABF解:BADCCDABF)(5、RSTTSRTSRF解:))()((TSRTSRTSRF1.3、写出下列函数的对偶式。1、EDECCABAF))()((解:EEDCCAABF)](['2、BADBCABF解:BADBCBAF'3、CBCACBBAF解:BCCABCBAF'4、ZYXZXYF解:ZYXZYXF'1.4、证明函数F为自对偶函数。2证:CBACBABAABCBABACBABACF)()()(=CBACBACBAABCBAABCBABACBABACBABACF))(()])((][))((['FCBACBACBAABCBABACBAABC)()(1.5、用公式将下列函数化简为最简“与或”式。1、CBACBACBABACBABAABBAF)()(2、ZWWYXZYXZWWYXZYXF)(=WYXYZXZWYXZYX3、CBCAABF经检验已是最简。或BCCABAF4、CAABBCCAABCBBAABBCCBAABF)(5、ADCACACBBAADCBCABAFDACBADACBBA6、ACDCACACBBACBACDCABAFACCBBAACCACBBA或:CBCAABCBCAABCBACDCABAF7、CDECBEDCBBAACFCEDCBCBBAACDBEDBCBAAC)(=CEDBBAACCEDBCBBAAC8、DCBBCDCBACBAF)()(=DCBBCDCABACAAB=CBCAABCBCABACAABCABACAAB或:=BCCABABCCABACAAB9、ZYXYXF)(=ZYXZXZYXZYYZXZYX10、))()((WZYVXVWZYXF=))((WZYVWXWVXZVZXYVYXXV=))((WZYVWVVZVYX=WVWVZWVYWVZVZVYZWVYVYZVYWXXZXYVX=WVVZVYWXXZXYVX=WVVZVYVX1.6、逻辑函数)())()()((DCDCBBACCDABABABAF。若A、B、C、D、的输入波形如图所示,画出逻辑函数F的波形。)())()()((DCDCBBACCDABABABAF=)())((DCDCBCABBCBDACADABAABA=ABCBCBDACADAA)(1.7、逻辑函数F1、F2、F3的逻辑图如图2—35所示,证明F1=F2=F3。ABCDFABCDE“1”F1ABCDE“0”F2+++++ABCDFF“1”F3图2—3531111111100DCBA00010111111010题4图题1图111111BAC00011110011111111100DCBA00010111111010题3图1φφ1φφ1φ11φφ00DCBA00010111111010题1图1φ1φ1111φ00DCBA00010111111010题2图解:ECDABECDABF1ECDABEDCBAF2ECDABF3可证:F1=F2=F31.8、给出“与非”门、“或非”门及“异或”门逻辑符号如图2—36(a)所示,若A、B的波形如图2—36(b),画出F1、F2、F3波形图。1.9、用卡诺图将下列函数化为最简“与或”式。1、)7,5,4,2,1,0(3mF;解:CAACBF2、),156,7,8,9,110,1,2,3,4,(4mF;解:CBDAABF3、)13,14,153,4,5,7,9,(4mF;解:BCDDABDBADCBF4、)10,12,142,3,6,7,8,(4mF;解:DADBF5、)30,28,22,20,14,12,6,4(5mF解:CAF1.10、将下列具有无关最小项的函数化为最简“与或”式;1、)50,2,7,13,1(4mF无关最小项为)10,8,6,5,3,1(d;解:ACDF0)10,8,6,5,4,3,1(d2、)130,3,5,6,8,(4mF无关最小项为)10,4,1(d;解:CBADCADCACBAF0)10,4,1(d1111111111100DCBA00010111111010题2图00EDCBA000011110题5图11111111001011010100101111110图2—36(a)AF1ABAF2AB+AF2AB⊕图2—36(a)ABF1BAF2BAF3AB43、)8,10,110,2,3,5,7,(4mF无关最小项为)15,14(d;解:DACCAABF0)15,14(d4、)7,11,142,3,4,5,6,(4mF无关最小项为)15,13,10,9(d;解:DCBF0)15,13,10,9(d1.11、用卡诺图将下列函数化为最简“与或”式;1、CBACBACBACBAABCF;解:ABCBACACBF2、BCCBACAABCACF;解:BCCBAF3、CBAABCDDBF;解:CBAABCDDBF4、BCABCDDCABCBCDAF;解:BDBCDCF5、EDBBCEDCBCABAF;解:DCBCECABAF1.12用卡诺图化简下列带有约束条件的逻辑函数(1)P1(A,B,C,D)=dm)15,14,13,2,1,0()12,11,9,8,6,3(4=ACBDBCDACD()或(2)P2(A,B,C,D)=dm)15,14,13,10,9,8()12,11,6,5,4,3,2,0(4=BCBCD11111φφ11100DCBA00010111111010题3图111111φφ1φ1φ00DCBA00010111111010题4图题1图11111BAC0001111001题2图111111BAC000111100111111100DCBA00010111111010题3图1111111100DCBA00010111111010题4图1111111100EDCBA000011110题5图111111111111110010110101001011111105F11111BAC00011110011.13、用最少的“与非”门画出下列多输出逻辑函数的逻辑图。1、CACBCAFBACBBAG解:CACABACACABAFBACABABACABAG逻辑图:)15,11,10,4,3,2(4mF2、)15,11,10,8,4,2,0(4mG)15,11,10,6,4,2,0(4mH解:CBABDDCBACBABDDCBAFCAABDDCBACAABDDCBAGDCBDAABDDBCADCBDAABDDCBAH逻辑图:11111100DCBA00010111111010F111111100DCBA00010111111010G111111100DCBA00010111111010HABCDFGHGCBA100001110111111FGABC
本文标题:《数字电子技术基础》第一章习题答案
链接地址:https://www.777doc.com/doc-2838577 .html