您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 核磁共振法在高分子材料中的应用
核磁共振法在高分子材料中的应用摘要:本文介绍了不同核磁共振方法和技术在高分子材料研究中的应用。主要论及核磁共振的常规氢谱、碳谱、多脉冲技术,以及固体核磁共振仪、核磁共振成象技术和核磁共振在高分子科学中的应用。关键词:核磁共振方法;高分子材料核磁共振波谱是研究原子核在磁场中吸收射频辐射能量进而发生能级跃迁现象的一种波谱法。通常专指氕原子的核磁共振波谱(质子核磁共振谱)的研究。同一核素的原子核在不同化学环境下能产生位置、强度、宽度等各异的谱线,为研究复杂的分子结构提供重要的信息。1核磁共振基本原理核磁共振研究的对象为具有磁矩的原子核。原子核是带正电荷的粒子,其自旋运动将产生磁矩,但并非所有同位素的原子核都有自旋运动,只有存在自旋运动的原子核才具有磁矩。原子核的自旋运动与自旋量子数I相关,I=0的原子核没有自旋运动,I≠0的原子核有自旋运动。核磁共振研究的主要对象是I=1/2的原子核,这样的原子核不具有电四极矩,核磁共振的谱线窄,最易于核磁共振检测。原子核同时具有电荷及自旋,根据古典电磁学理论,旋转的电荷可视为环电流,故原子核也有对应的磁矩μ,其与自旋角动量P成正比,关系如下:μ=γP=γI(1.1)磁矩和自旋角动量之间的比例常数定义为旋磁比γ,旋磁比随原子核种类而有所不同,I为自旋算符,P为角动量算符,是Plank常数h除以2π。当受到外加磁场B0影响时,具自旋角动量的原子核其能级会分裂为(2I+1)个非简并态,两个能级的能量差为ΔE=-γB0。核磁共振就是样品处于某个静磁场中,具有磁距的原子核存在着不同能级,用某一特定频率的电磁波来照射样品,并使该电磁波满足两个能级的能级差条件,原子核即可进行能级之间的跃迁,发生核磁共振。在考虑磁距与磁场相互作用时,可以用量子力学或经典力学加以处理。每一种处理都有其方便之处。对于弛豫和交换过程以经典处理更为合适;而在讨论化学位移和自旋耦合时,须要使用能级知识,因而要用量子力学进行处理。2核磁共振在聚合物研究中的几种用途2.1高分子的鉴别1H-NMR主要研究化合物中1H原子核的核磁共振。它可提供化合物分子中氢原子所处的不同化学环境的它们之间的相互关联的信息,从而确定分子的组成、连接方式及空间结构等。而113C-NMR主要研究化合物中碳的股价结构,特别是在高分子结果分析中,研究的归属很有意义。高分子化合物主要由碳氢组成,所以用1H谱和13C谱来研究聚合物的结果无疑是很合适的,特别能解决结构分析问题。而对于一些结构类似的聚合物,红外光谱图也基本类似,这是利用1H-NMR或13CNMR就很容易鉴别。例如:聚烯烃的鉴别,聚丙酸乙烯酯和聚丙烯酸乙酯的鉴别及未知物的鉴别等。2.2共聚组成的测定由于NMR谱峰的强度与该物质相应的元素有很好的对应关系,尤其是对于1H-NMR,共振峰的积分面积正比于相应的质子数,所以可以通过直接测定质子数之比而得到各基团的定量结果。因此,利用NMR研究共聚物组成最大地有点事不用依靠已知标样,就可以直接测定共聚物组成比。2.3支化结构的研究碳谱中支化高分子和线型高分子产生的化学位移不同,由于支链会影响到主链碳原子的化学位移,且支链的每一个碳原子也有不同吸收,所以支化结构为一系列复杂的吸收峰。2.4高聚物立构规整性测定只有通过研究链的精细结构才能够观察到同一氢核在不同立体化学环境中的差别,必须在高磁场强度下测量。3核磁共振技术在高分子材料研究中的具体应用3.1固体核磁共振波谱技术NMR核磁共振波谱仪是高分子材料结构和性能的重要表征技术。近年来,NMR新技术层出不穷,已可以从分子水平研究材料的微观结构。NMR成像技术可以跟踪加工过程中的结构和形态的变化。固体高分辨率NMR技术已经在高分子结构研究中应用十多年了。它特别适用于两种情况1)样品是不能溶解的聚合物,例如交联体系;2)需要了解样品在固体状态下的结构信息,例如高分子构象、晶体形状、形态特征等。由于13C的自然丰度较低,磁旋比也小,所以往往对样品采用魔角旋转(MAS)、交叉极化(CP)及偶极去偶(DD)等技术来强化检测灵敏度。固体NMR谱的各向异性加宽作用可以通过MAS加以消除,从而获得与溶液谱一样的自旋多重化精细谱带,使峰变窄,提高分辨率。高功率的质子偶极去偶技术(DD)用来消除H-X(X=13C,19F,29Si)的偶极作用。交叉极化(CP)则通过Hartman-Hahn效应,在合适的条件下采样,可以提高检测灵敏度。MAS/DD/CP三项技术综合使用,便可得到固体材料的高分辨C-13核磁共振谱。固体NMR在高分子材料表征中的重要用途之一是形态研究,高分子链可以有序的排列成结晶型或无规的组成无定形型,结晶型和无定形型相区在NMR中化学位移不同,可以很容易地加以区别。NMR技术的各种驰豫参数也可用来鉴别多相体系的结构。尤其当各相的共振峰化学位移差别很小时,驰豫参数分析相结构就显得格外重要。相结构研究中常用的驰豫参数有自旋-晶格驰豫(T1),自旋-自旋驰豫(T2)及旋转坐标中的自旋-晶格驰豫(T1p)等。对于多相聚合物体系,如热塑性弹性体,由硬段和软段组成,由于软,硬相聚集态结构,玻璃化温度上的明显差别,在NMR实验时,可利用软,硬段驰豫时间的不同,来分别研究软硬相的相互作用及互溶性。弹性体材料有重要的工业应用价值,因为弹性体在玻璃化转变温度之上可以进行取向运动,且在高弹态时偶极耦合作用比玻璃态时小,特别适用于固体NMR来进行结构分析。只要采用较低的MAS转速及较低的偶极去偶功率,就可以得到高分辨的固体NMR谱,从而分析其网络结构。3.2二维核磁共振波谱技术二维核磁共振谱的出现和发展,是近代核磁共振波谱学的最重要的里程碑。J.Jeener在1971年首次提出了二维核磁共振的概念,但并未引起足够的重视。Ernst对核磁共振技术的大量卓有成效的研究,再加上他对脉冲-付立叶变换核磁共振的贡献,Ernst教授荣获了1991年诺贝尔化学奖。这进一步说明了二维核磁共振的重要性。异核2DNMR技术在研究高分子链时,根据1H谱与13C谱化学位移的相关性,在对H1谱进行构象-序列分析方面,可发挥很大的优势。如下例所示:二维核磁共振研究PVC的微观结构。利用二维核磁技术研究PVC的基础在于已经建立了一维核磁共振的碳谱和氢谱并且对谱峰有了一定的结构归属。二维核磁共振相关谱可以进一步提高碳谱和氢谱的分辨率,完整的给出PVC的空间序列结构。在PVC的一维氢谱中,不能很好地分辨不同空间序列结构中的亚甲基质子。次甲基-亚甲基耦合形式很复杂,但用二维NMR实验可以解决这些问题。如图3~5所示。用固体核磁技术与二维核磁技术相结合,可以表征固态物质的非均匀性。用液态中的NMR交叉驰豫有关的现象可以研究固态物质的结构。图6为苯乙烯和聚乙烯甲基醚的二元共混体的1D固态质子NMR谱,浇铸是在甲苯(共混体BT)或氯仿(BC)溶液中加入石油醚而得,谱图上仅由微小差别,并不能得出不均匀性的结论。图6a,b是二元共混体的的2D自旋扩散谱。芳香族质子峰是聚苯乙烯的特征峰,而OCH3,OCH峰则是由聚乙烯甲基醚产生的,这两峰间的自旋扩散提供了所需的信息。BC共混体的2D谱在上述共振间无交叉峰,因而应是均匀的,看来没有含两种高聚物的混合区域。BT共混体的2D谱则显示不同高聚物峰间强的交叉峰,因此,有一个两高聚物在分子水平上混合物的均匀区域。结果证明,不同区域的准确组份不能用2D自旋扩散谱单独测定。然而,结合选择性饱和实验,证明用一简单的三相模型可以得到共混体BT的组份。虽然在概念上实验是很简单的而结果却很丰富,但实验的要求却比溶液中严格的多。为了得到足够的谱分辨率需要魔角样品旋转,多脉冲偶极去偶。4结语NMR技术即核磁共振谱技术,是将核磁共振现象应用于分子结构测定的一项技术。对于有机分子结构测定来说,核磁共振谱扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”。目前对核磁共振谱的研究主要集中在1H和13C两类原子核的图谱,其在高分子材料中的应用得到很好的发展。参考文献[1]高家武等.高分子材料近代测试技术.北京:北京航空航天大学出版社.1994[2]薛奇编.高分子结构研究中的光谱方法.北京:高等教育出版社.1995[3]朱诚身.聚合物结构分析(第二版).北京:科学出版社,2009:100-130[4]宁永成.有机化合物结构鉴定与有机波谱学.北京:科学出版社,2000
本文标题:核磁共振法在高分子材料中的应用
链接地址:https://www.777doc.com/doc-2851833 .html