您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > GPS测量原理及应用复习资料
《GPS测量原理及应用》武大第三版,复习资料第一章绪论1.GPS系统包括三大部分:空间部分——GPS卫星星座,地面控制部分——地面监控系统,用户设备部分——GPS信号接收机。2.GPS卫星星座部分:由21颗工作卫星和3颗在轨备用卫星组成GPS卫星星座,记作(21+3)GPS星座。24颗在轨卫星均匀分布在6个轨道平面内,轨道倾角为55°,各个轨道平面之间相距60°。在地球表面上任何地点任何时刻,在高度角15°以上,平均可同时观测到6颗卫星,最多可达9颗卫星。3.GPS卫星的作用:第一,用L波段的两个无线载波向广大用户连续不断地发送导航定位信号。第二,在卫星飞越注入站上空时,接收由地面注入站用S波段发送到卫星的导航电文和其他有关信息,并通过GPS信号电路,适时地发送给广大用户。第三,接收地面主控站通过注入站发送到卫星的调度命令,适时地改正运行偏差或启用备用时钟等。4.地面监控系统:1个主控站(美国科罗拉多)3个注入站(阿森松岛,迪哥加西亚岛,卡瓦加兰)5个监控站(1+3+夏威夷)5.GPS信号接收机的任务是:能够捕获到按一定卫星高度截止角所选择的待测卫星的信号,并跟踪这些卫星的运行,对所接收到的GPS信号进行变换、放大和处理,以便测量出GPS信号从卫星到接收机天线的传播时间,解译出GPS卫星所发送的导航电文,实时地计算出测站的三维位置,甚至三维速度和时间。6.GPS系统的特点:定位精度高,观测时间短,测站间无需通视,可提供三维坐标,操作简便,全天候作业,功能多,应用广。7.GPS系统的应用前景:①用于建立高精度的国家性大地测量控制网,测定全球性的地球动态参数②用于建立陆地海洋大地测量基准,进行高精度的海岛陆地联测以及海洋测绘③用于监测地球板块运动状态和地壳形变④用于工程测量,成为建立城市与工程控制网的主要手段⑤用于测定航空航天摄影瞬间的相机位置.8.我国的GPS定位技术的应用和发展情况:在大地测量方面,利用GPS技术开展国际联测,建立全球性大地控制网,提供高精度的地心坐标,测定和精化大地水准面;在工程测量方面,应用GPS静态相对定位技术,布设精密工程控制网,用于城市和矿区油田地面沉降监测、大坝变形监测、高层建筑变形监测、隧道贯通测量等精密工程;在航空摄影测量方面,我国测绘工作者也应用GPS技术进行航测外业控制测量、航摄飞行导航、机载GPS航测等航测成图的各个阶段;在地球动力学方面,GPS技术用于全球板块运动监测和区域板块运动监测;此外,GPS技术还用于海洋测量、水下地形测绘、军事国防、智能交通、邮电通信、地矿、煤矿、石油、建筑以及农业、气象、土地管理、环境监测、金融、公安等部门和行业。第二章坐标系统和时间系统1、天球:指以地球质心为中心,半径r为任意长度的一个假想球体,为建立球面坐标系统,必须确定球面上的一些参考点、线、面和圈。天球坐标系2、天球坐标系:以天球及天球上的点线圈为基础所建立的坐标系。3、天球坐标系的基准点:春分点;天球坐标系的基准面:天球赤道面。4、天球坐标系的特点:与地球自转无关,用于描述卫星的运行位置和状态。5、分类三种:瞬时真天球坐标系,瞬时平天球坐标系,协议天球坐标系;6、分类三种关系:协议天球坐标系——岁差——瞬时平天球坐标系——章动——瞬时真天球坐标系。地球坐标系7、地球坐标系:以地球及地球上的点线圈为基础所建立的坐标系8、地球坐标系的基准面:地球赤道面;地球坐标系的基准点:地球赤道面和格林尼治时间子午面的交点。9、地球坐标系的特点:随同地球自转,用于描述地面观测站的位置。10、分类两种:瞬时地球坐标系,协议地球坐标系。11、分类两种关系:协议地球坐标系——极移——瞬时地球坐标系。站心坐标系12、站心坐标系:以测站及测站上的点线圈为基础建立的坐标系。13、站心坐标系特点:随同地球自转,用于描述地面观测站与卫星的关系、卫星在空中的分布情况。14、分类两种:站心地平直角坐标系,站心极坐标系。15.完全定义一个空间直角坐标系必须明确:①坐标原点位置②三个坐标轴的指向③长度单位.16.参心坐标系和质心坐标系的定义:参心是椭球的几何中心,质心是椭球的质量中心17.岁差:春分点除因地球自转轴方向改变引起的变化外还因黄道的缓慢变化而变化18.章动:地球瞬时自转轴在惯性空间不断改变方向的周期性运动。19.我国目前常用的两个国家大地坐标系统:①1954年北京坐标系(参心坐标系)②1980年国家大地坐标系(参心坐标系,大地原点设在我国西部—陕西省泾阳县永乐镇)20、坐标转换方法:七参数法(3个平移参数,3个旋转参数,1个尺度参数);多项式拟合法。21、坐标转换:协议地球坐标系—极移改正—瞬时极地球坐标系—旋转时角—真天球坐标系—岁差—平天球坐标系—章动—协议天球坐标系22、长时间计时方法:阳历(儒略历,格里历),阴历,阴阳历;儒略日,简化儒略日,GPS周(GPS系统中使用的连续计时法)23、GPS卫星位置采用WGS-84大地坐标系。24、GPS系统中卫星钟和接收机钟均采用稳定而连续的GPS时间系统。第三章卫星运动基础及GPS卫星星历1.二体问题:忽略所有的摄动力,仅考虑地球质心引力研究卫星相对于地球的运动,在天体力学中,称之为二体问题。2.卫星的无摄运动(二体运动):只考虑地球质心引力作用的卫星运动。卫星的受摄运动:在考虑中心引力的同时,考虑摄动力的影响来研究地球的运动。3.中心引力:质量集中于球心的质点所产生的引力。4.开普勒轨道六参数(轨道根数a,e,V,Ω,i,ω)①长半径a②扁心率e(或短半径b)③真近点角V(在轨道平面上卫星与近地点之间的地心角距)④升交点半径Ω(在赤道面上,升交点N与春分点γ之间的地心夹角)⑤轨道面倾角ί(卫星轨道平面与地球赤道面之间的夹角)⑥近地点角距ω(在轨道平面上近地点A与升交点N之间的地心角距)5、开普勒三定律:①轨道定律:卫星运行的轨道是一个椭圆,该椭圆的一个焦点与地球质心重合。②面积定律:在相同时间内所扫过的面积相等。③周期定律:运动周期的平方与轨道椭圆长半轴的立方之比是一个常数。6.卫星星历:描述卫星运动轨道的信息。有了卫星星历就可以计算出任意时刻的卫星位置及其速度。7.GPS卫星星历的分类:①预报星历(广播星历):用户接收机接收卫星发射的含有轨道信息的导航电文,经过解码器便可获得所需的预报星历。优点:实时缺点:精度低内容:瞬间开普勒六参数等共17个参数。通用数据格式:伪随机编号,年,月,日,时,分,秒,②后处理星历:是一些国家某些部门,根据各自建立的卫星跟踪站所获得的对GPS卫星的精密观测资料,应用与确定广播星历相似的方法而计算的卫星星历。(包括精密星历、快速星历、超快速星历)优点:轨道参数准确缺点:不能做到实时第四章GPS卫星导航电文和卫星信号1、GPS信号结构包括:测距码(P码,C/A码);数据码(导航电文,D码);载波(L1,L2载波)。GPS卫星信号是GPS卫星向广大用户发送的用于导航定位的调制波导航电文①导航电文(卫星电文、数据码/D码):GPS卫星的导航电文是用户用来定位和导航的数据基础。②导航电文主要包括:卫星星历,时钟改正,电离层时延延正,工作状态信息以及C/A码转换到捕获P码的信息。③卫星星历每小时更新一次,12.5min播完一次。测距码①C/A码(粗码):用于分址,搜捕卫星,粗测距,民用码,仅L1调制。②P码(精码):用于分址,精密测距,为军用码,L1、L2测距。载波①L1、L2载波②作用:加载低频信号(难以传输)、测距。2、码:表达信息的二进制数及其组合。3、码元:码组合中的每个二进制数均称为码元,单位是bit4、码长:一个周期内码元的最大个数,以Nu表示。5、调制:将频率较低的信号加载在频率较高的载波上的过程称为调制。6、GPS接收机的分类:①按用途:导航型、测地型、授时型接收机②按载波频率:单频和双频接收机③按通道数:多通道、序贯通道、多路多用通道接收机④按工作原理:码相关型、平方型、混合型、干涉型接收机7、GPS接收机的组成:由GPS接收机天线单元,GPS接收机天线主机单元和电源三部分组成。第五章GPS卫星定位基本原理1、GPS定位基本原理:①根据地面已知点坐标,用空间前方交会求出卫星在轨位置;②根据空中卫星的已知坐标,用空间后方交会的方法求出测站点的位置。2、定位类型:根据所用观测值:①伪距定位②载波相对定位根据定位模式:①绝对定位(单点定位)②相对定位(差分定位)根据获取定位结果的时间:①实时定位②事后定位根据接收机的运动状态:①静态定位②动态定位2.静态定位:指的是对于固定不动的待定点,将GPS接收机安置于其上,观测数分钟乃至更长的时间,以确定该点的三维坐标,也叫绝对定位。3.相对定位:若以两台GPS接收机分别置于两个固定不变的待定点上,则通过一定时间的观测,可以确定两个待定点之间的相对位置。4.动态定位:至少有一台接收机处于运动状态,测定的是各观测时刻运动中的接收机的点位。5.依据GPS测距的原理,其定位原理与方法主要有①伪距法定位②载波相位测量定位③差分GPS定位等6.伪距法定位:由GPS接收机在某一时刻测出得到四颗以上GPS卫星的伪距以及已知的卫星位置,采用距离交会的方法求定接收机天线所在点的三维坐标。所测伪距就是由卫星发射的测距码信号到达GPS接收机的传播时间乘以光速所得出的量测距离。由于卫星钟、接收机钟的误差以及无线电信号经过电离层和对流层中的延迟,实际测出的距离与卫星到接收机的几何距离有一定的差值,因此一般称量测的距离为伪距。7.伪距法距离测量的原理:GPS卫星依据自己的时钟发出某一结构的测距码,该测距码经过T时间的传播后到达接收机。接收机在自己的时钟控制下产生一组结构完全相同的测距码—复制码,并通过时延器使其延迟时间t将这两组测距码进行相关处理,若自相关系数R(t)≠1,则继续调整延迟时间t直至自相关系数R(t)=1为止。8.重建载波:在GPS信号中由于已用相位调整的方法在载波上调制了测距码和导航电文,因而接收到的载波的相位已不再连续,所以在进行载波相位测量以前,首先要进行解调工作,设法将调制在载波上的测距码和卫星电文去掉,重新获取载波,这一工作称为重建载波。9.载波相位测量原理:载波相位测量的观测值是GPS接收机所接收的卫星载波信号与接收机本振参考信号的相位数。10.整周模糊度(整周未知数)的确定:①伪距法②将整周未知数当作平差中的待定参数—经典方法③多普勒法(三差法)④快速确定整周未知数。整周模糊度:载波在空间传输的整周期数,无法通过观测获得的未知数。11.整周跳变:在跟踪过程中,由于某种原因造成卫星信号失锁,计数器无法连续计数。当信号重新被跟踪后,整周计数就不正确,但是不到一个整周的相位观测值仍是正确的,这种现象成为整周跳变。周跳产生的原因:建筑物或树木等障碍物的遮挡;电离层电子活动剧烈;多路径效应的影响;卫星信噪比太低;接收机的高动态;接收机设置软件的不周全。12.整周跳变的探测与修复常用的方法:屏幕扫描法、用高次差或多项式拟合法、在卫星间求差法、用双频观测值修复周跳、根据平差后的残差发现和修复整周跳变。13.GPS绝对定位(单点定位):利用GPS卫星和用户接收机之间的距离观测值直接确定用户接收机天线在WGS—84坐标系中相对于坐标原点—地球质心的绝对位置。①静态绝对定位:接收机天线处于静止状态下,确定观测站坐标的方法。②动态绝对定位:接收机天线处于运动状态(或静止时间较短)14.GPS相对定位:是至少两台GPS接收机,同步观测相同的GPS卫星,确定两台接收机天线之间的相对位置(坐标差)。19.差分GPS定位技术:是将一台GPS接收机安置在基准站上进行观测。根据基准站已知精密坐标,计算出基准站到卫星的距离改正数,并由基准站实时地将这一改正数发送出去。用户接收机在进行GPS观测的同时,也接收到基准站的改正数,并对其定位结果进行改正,从而提高定位精度。20.差分GPS可分为单基准站差分、具有多个基准站的局部区域差分和广域差分三类。21.单站差分按基准站发送信息方式可分为位置差分、伪距差分和载波相位差分(RTK)三
本文标题:GPS测量原理及应用复习资料
链接地址:https://www.777doc.com/doc-2874757 .html