您好,欢迎访问三七文档
第4章模具零件电火花加工电火花加工又称放电加工(ElectricalDischargeMachining简称EDM),在20世纪40年代开始研究并逐步应用于生产。它是在加工过程中,利用两极(工具电极和工件电极)之间不断产生脉冲性的火花放电,靠放电时局部、瞬时产生的高温把金属蚀除下来,以使零件的尺寸、形状和表面质量达到预定要求的加工方法。因放电过程中可见到火花,故称之为电火花加工,也称电蚀加工。加工中工件和电极都会受到电腐蚀作用,只是两极的蚀除量不同,这种现象成为极性效应。工件接正极的加工方法称为正极性加工;反之,称为负极性加工。电火花加工的质量和加工效率不仅与极性选择有关,还与电规准(即电加工的主要参数)、工作液、工件、电极的材料、放电间隙等因素有关。电火花放电加工按工具电极和工件的相互运动关系的不同,可以分为电火花穿孔成形加工、电火花线切割、电火花磨削、电火花展成加工、电火花表面强化和电火花刻字等。其中,电火花穿孔成形加工和电火花线切割在模具加工中应用最广泛。4.1电火花加工的基础知识4.1.1电火花加工的基本原理及必要条件电腐蚀现象早在19世纪初就被人们发现并加以研究。例如,电器开关在闭合或断开时,往往产生火花放电而把接触表面烧毛、腐蚀。所以人们一直认为电腐蚀是有害的。因而不断地研究它的成因,并设法减轻和避免。研究结果表明,电火花腐蚀的主要原因在于火花放电时,火花通道瞬时产生大量的热,以致使电极表面的金属局部熔化甚至汽化而被蚀除下来,形成放电凹坑。要将放电腐蚀原理用于导电材料的尺寸加工,必须具备以下几个基本条件。1)工具电极和工件电极之间在加工时必须保持一定的间隙,一般是几个微米至数百微米。因此,加工中必须用自动进给调节机构来保证加工间隙随加工状态而变化。2)火花放电必须在一定绝缘性能的介质中进行,液体介质有压缩放电通道的作用,同时液体介质还能把电火花加工过程中产生的金属屑、炭黑等电蚀产物从放电间隙中排出去,并对电极和工件有较好的冷却作用。对导电材料进行尺寸加工时,极间应有液体介质;表面强化时,极间为气体介质。3)放电点局部区域的功率密度足够高,即放电通道要有很高的电流密度(一般为105~106A/cm)。这时,放电所产生的热量就足以使电极表面的局部金属瞬时熔化甚至汽化。4)火花放电是瞬时的脉冲性放电。放电的持续时间一般为1~1000μs,这样才能使放电产生的热量来不及传导扩散到材料的其余部份,放电点集中在很小范围,内能量集中,温度高。如果放电时间过长,就会形成持续电弧放电,使加工表面材料大范围熔化烧伤而无法用作尺寸加工。5)在先后两次脉冲放电之间,应有足够的停歇时间,排除电蚀产物,使极间介质充分消电离,恢复介电性能,以保证每次脉冲放电不在同一点进行,避免发生局部烧伤现象,使重复性脉冲放电顺利进行。图4.1.1所示为脉冲电源的空载电压波形。图中ti为脉冲宽度,t0为脉冲间隔,tp为脉冲周期,ui脉冲峰值电压或空载电压。图4.1.1脉冲电源的空载电压波形以上这些问题的解决,是通过图4.1.2所示的电火花加工系统来实现的。工件5与工具3分别与脉冲电源2的两输出端相连接。自动进给调节装置1使工具和工件间经常保持一很小的间隙(此处为电机与丝杆螺母机构),当脉冲电压加到两极之间时,便在当时条件下相对某一间隙最小处或绝缘强度最低处击穿介质,在该局部产生火花放电,放电点处产生瞬时高温使工具和工件表面都蚀除掉一小部分金属,各自形成一个小凹坑。脉冲放电结束后,经过一段时间间隔,使工作液恢复绝缘后,第二个脉冲电压又加到两极上,又会在当时极间距离相对最近或绝缘强度最弱处击穿放电,又电蚀出一个小凹坑。如此连续不断地重复放电,工具电极不断地向工件进给就可将工具的形状复制在工件上,加工出所需要的零件,整个加工表面将由无数个小凹坑所组成,如图4.1.3所示,其中图4.1.3(a)表示单个脉冲放电后的电蚀坑,图4.1.3(b)表示多次脉冲放电后的电极表面。图4.1.2电火花加工原理图4.1.3电火花加工表面局部放大图1-自动进给调节装置;2-脉冲电源;3-工具;4-工作液;5-工件;6-工作台;7-过滤器;8-工作液泵4.1.2电火花加工的特点电火花加工中,加工材料的去除是靠放电时的热作用实现的,材料的可加工性主要取决于材斜的导电特性及其热学特性,如熔点、沸点(汽化点)、比热容、热导率、电阻率等,而几乎与其力学性能(硬度、强度)无关,因此适合于加工难以切削加工的材料。放电加工中,加工工具电极和工件不直接接触,没有机械加工中的切削力,因此适宜加工低刚度工件及微细加工。由于可以简单地将工具电极的形状复制到工件上,因此特别适用于复杂表面形状的加工。电火花加工是直接利用电能进行加工,而电能、电参数较机械量易于数字控制、智能控制和无人化操作。由于电火花加工具有许多传统切削加工所无法比拟的优点,因此其应用领域日益扩大,目前已广泛应用于机械(特别是模具制造)、宇航、航空、电子、电机电器、精密机械、仪器仪表、汽车拖拉机、轻工等行业,以解决难加工材料及复杂形状零件的加工问题。加工范围可小至几微米的小轴、孔、缝,大到几米的超大型模具和零件。电火花加工的局限性在于:主要用于导电材料的加工;一般加工速度较慢;存在电极损耗。4.1.3电火花加工的微观过程了解放电加工的机理,即金属材料蚀除的微观过程,有助于掌握电火花加工中各种基本规律,并能对脉冲电源、机床设备等提出合理的要求。由于放电时间很短,放电间隙很小,所以放电加工的机理相当复杂。实验结果表明,电火花加工的微观过程是电力、磁力、热力、流体动力、电化学和胶体化学等综合作用的结果。这一过程大致可分为以下几个连续的阶段:极间介质的击穿与放电;能量的转换、分布与传递;电极材料的抛出;极间介质的消电离。1.极间介质的击穿与放电由于工具电极和工件的微观表面是凹凸不平的,极间距离又很小,因而极间电场强度是很不均匀的,两极之间离得最近的突出点或尖端处的电场强度一般为最大。当阴极表面某处的场强增加到105V/mm以上时,就会产生场致电子发射,由阴极表面向阳极逸出电子。在电场作用下负电子高速向阳极运动并撞击工作液介质中的分子或中性原子,产生碰撞电离,形成带负电的粒子(主要是电子)和带正电的粒子(正离子),导致带电粒子雪崩式增多,使介质击穿而放电。从雪崩电离开始到建立放电通道的过程非常迅速,一般小于0.1μs,间隙电阻从绝缘状况迅速降低到几分之一欧姆,间隙电流迅速上升到最大值(几安到几百安)。由于放电通道直径很小,所以通道中的电流密度可高达105~106A/cm。间隙电压则由击穿电压迅速下降到火花维持电压一般为(25V),电流则由0上升到某一峰值电流。图4.1.4所示为矩形波脉冲放电时的电压和电流波形。放电通道是由数量大体相等的带正电(正离子)和带负电粒子(电子)以及中性粒子(原子或分子)组成的等离子体。带电粒子高速运动时相互碰撞,产生大量的热,使通道温度相当高,但分布是不均匀的,从通道中心向边缘逐渐降低,通道中心温度可高达10000℃以上。由于放电时电流产生磁场,磁场反过来对电子流产生向心的磁压缩效应。由于受到放电时的磁压缩效应和周围介质动力压缩效应的作用,通道瞬间扩展受到很大阻力,放电开始阶段通道截面很小,其初始压力可达数十甚至上百兆帕。高压放电通道以及瞬时形成的气体分子团(以后发展成气泡)急速扩展,并产生强烈的冲击波向四周传播。在放电过程中,同时还伴随着一系列派生现象,其中有热效应、电磁效应、光效应、声效应及频率范围很宽的电磁波辐射和爆炸冲击波等。图4.1.4矩形波脉冲放电时的电压(u)和电流(i)波形2.能量的转换、分布与传递极间介质一旦被击穿,脉冲电源就通过放电通道瞬时释放能量,把电能转换为热能、动能、磁能、光能、声能及电磁波辐射能等(其中大部分转换成热能),使两极放电点和通道本身温度剧增,该处即产生局部的熔化或汽化,通道中的介质也汽化或热裂分解。脉冲电源释放的能量分布在放电通道、阳极上与阴极上。放电通道中的能量主要消耗在热辐射和热传导上。随着极间距离、电位梯度、放电电流和放电时间的增大,放电通道中消耗的能量亦增大。传递给电极上的能量是产生材料腐蚀的原因。在放电过程中,通道中的大量电子在电场的作用下奔向阳极并以很高的速度轰击阳极表面,将动能转变为热能。而通道中的正离子则在电场作用下奔向阴极,也以很高的速度轰击阴极表面,将其动能转变为热能。这些热源产生了很高的温度熔化和汽化了电极材料。3.电极材料的抛出传递给电极的能量转化成热能,并在电极表面形成一个瞬时高温热源。在脉冲放电初期,高温热源将使电极放电点部分材料汽化,在汽化过程中,产生很大的热爆炸力,使被加热至熔化状态的材料挤出或溅出。电极蒸气、介质蒸气以及放电通道的急剧膨胀也会产生相当大的压力,引起气化爆炸,把熔融金属抛出。同时,放电过程由于气化了得气体体积不断向外膨胀产生的扩张“气泡”。这些气泡上下、内外的瞬时压力并不相等,压力高处的熔融金属液体和蒸气就会喷爆而出,抛出进入工作液中。实际上熔化和汽化了的金属在抛离电极表面时,向四处乱射飞溅,除绝大部分抛入工作液中收缩成球状小颗粒外,有一小部分飞溅、附着、覆盖在相对的电极表面上去了。在某些条件下,这种互相飞溅覆盖现象的产物可以用来补偿电极工具在加工中的损耗。总之,电极材料的抛出是热爆炸力、磁流体动力、流体动力等综合作用的结果。人们对这种复杂的抛出机理的认识仍不完善,目前还在不断深化之中。4.极间介质的消电离一次脉冲放电结束,此后还应有一段间隔时间,使间隙介质消电离,即放电通道中的带电粒子复合为中性粒子,恢复本次放电通道处间隙介质的绝缘强度,以免总是重复在同一处发生放电而导致电弧放电,这样可以保证按两极相对最近处或电阻率最小处形成下一击穿放电通道。在加工过程中产生的电蚀产物(如金属徽粒、炭粒、气泡等)如果来不及排除、扩散出去,就会改变间隙介质的成分和降低绝缘强度,火花放电时产生的热量如不及时传出,带电粒子的自由能不易降低,将大大减少复合的概率,使消电离过程不充分,结果将使下一个脉冲放电通道不能顺利地转移到其他部位,而始终集中在某一部位,使该处介质局部过热而破坏消电离过程,脉冲火花放电将转变为有害的稳定电弧放电,同时工作液局部高温分解后可能结炭,在该处聚成焦粒而在两极间搭桥,使加工无法进行下去。由此可见,在电火花加工过程中,为了保证加工的正常进行,在先后两次脉冲放电之间一般都应有足够的停歇时间,其最小脉冲停歇时间的选择,不仅要考虑介质消电离的时间,而且还要考虑电蚀产物扩散和排出的难易程度。4.1.4电火花加工常用术语和符号我国电加工学会参照国际电加工界的电火花加工术语、定义和符号,制定了我国电火花加工的术语、定义和符号,以利于国内外学术交流、图书出版和学生教育培养等。下面介绍常用的术语和符号。1)工具电极电火花加工用的工具,是火花放电时电极之一,故称工具电极。2)放电间隙是指加工时,工具和工件之间产生火花放电的距离间隙。在加工过程中称之为加工间隙S,它的大小一般在0.01~0.5mm之间。粗加工时间隙较大;精加工时则较小。加工间隙又可分为端面间隙SF和侧面间隙SL;对冲压模具等的穿孔加工来说,可分为入口间隙Sin和出口间隙Sout;在一般情况下SF稍小于SL,Sin稍小于Sout。3)脉冲电源是电火花加工设备的主要组成部分之一,它给放电间隙提供一定能量的电脉冲,是电火花加工时的能量来源,常简称为电源。4)伺服进给系统是电火花加工设备的主要组成部分,作用是使工具电极伺服进给、自动调节,使工具电极和工件在加工过程中保持一定的平均端面放电间隙。我国早期电火花加工机床中的伺服进给系统是液压式的,靠液压油缸和活塞产生进给运动,实现伺服进给。现在采用步进电动机或大力矩、宽调速直流电动机以及交流伺服电动机作为伺服进给系统。5)工作液介质电火花加工时,工具和工件间的放电间隙必须浸泡在有一定绝缘性能的液体介质中,此液体介质即称工作液介质。一般将煤油作为电火花加工时的工作液。6)电蚀产物是指电火花加工过程中被电火花蚀除下来的产物。狭义而言,指工具和
本文标题:模具零件电火花加工
链接地址:https://www.777doc.com/doc-288287 .html