您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > pH-电位图原理在环境化学中应用的探讨01
pH-电位图原理在环境化学中应用的探讨韩湘才1廖海波2摘要:本文简要介绍了pH-电位图结构原理和方法,对pH-电位图研究重金属及硫在水环境、土壤环境中的行为等环境化学方面的应用进行了探讨关键词:pH-电位图原理、氧化还原电位、活度、反应自由能。ApplicationofpH-potentialmappingprincipleinEnvironmentalChemistryAbstract:ThispaperbrieflyintroducesthestructureprincipleandmethodofapplicationofpH-potential,pH-potentialmapofheavymetalandsulfurinthewaterenvironment,soilenvironmentandthebehaviorofenvironmentalchemistryarediscussedKeywords:potentialpH-diagramprinciple,redoxpotential,activity,reactionfreeenergy.pH-电位图在湿法冶金领域中的广泛应用已为人们所熟知,应用pH-电位图来研究重金属与土壤氧化还原条件的关系及水体中重金属的稳定性等环境化学的有关问题,根据重金属-H2O系及MeS-H2O系pH-电位图,结合硫-H2O及pH-电位图并估计某些重金属形成硫化物的条件和可能性,从而了解其在环境中的行为,为控制重金属对天然水体及土壤的污染及危害提供理论依据显得日益重要。本文介绍了pH-电位图结构和方法,应用pH-电位图分析硫几个重金属在水环境和土壤环境的行为。1.pH-电位图的结构原理任何一种溶液中总含有氢离子,并且和各种不同的金属离子在热力学上保持着一定的平衡关系。氧化还原反应进行的方向及限度取决于有关物质得失电子的难易程度,即相应半电池的电极电位。水溶液中的化学反应具有如下三种类型:1.1有电子迁移而无H+参于的氧化还原反应aA+ne=bB其反应的电极电位为:0.059(aA)aEh=E0―――log――――(1)n(aB)b式中:Eh―电极电位(伏),ΔG0E0值可由查表得到或由反应的标准自由能变化ΔG0求出:E0=――――23060n1.2无电子迁移,而离子活度只与pH有关的反应:aA+mH+=bB+cH2Ol(aB)bpH=pH0―――log――――(2)m(aA)a-ΔG0pH0=―――1364m1.3有电子迁移,而E0与pH有关的氧化―还原反应。aA+mH++ne=bB+cH2O25℃时,反应的电极电位为:m0.059(aA)aEh=E0―0.059―pH+―――log―――(3)nn(aB)b-ΔG0E0=――――23060n根据化学平衡的原理,可按以下几个步骤绘制研究体系给定条件下的pH-电位图:Ⅰ.确定体系可能发生的各类反应及其中每个反应的平衡方程式;Ⅱ.利用参与反应的各组分的热力学数据计算反应的ΔG0,从而求得反应的平衡常数K或标准电极电位E0;Ⅲ.根据上述通式导出体系中各个反应的电极电位Eh及pH的计算公式;Ⅳ.根据及pH的计算公式,在指定离子活度或气相分压的条件下,算出各个反应在一定温度下的E0与值;最后表示在以E0为纵坐标和以pH为横坐标的图上。上诉三种反应类型在pH-电位图上分别呈现图1(a)、(b)、(c)所示的不同线性。图1pH-电位图三种类型平行线由图可知,在pH-电位图中三种类型的平衡线斜率是不同的。第(1)类反应由于没有H+离子参与,平衡线是一条与pH坐标平行的水平线,斜率为零;第(2)类反应由于没有电子转移,反应的平衡与E0无关,平衡线是一条与Eh坐标平行的垂直线,斜率为无穷大;第(3)类反应的平衡既与Eh有关又与pH有关,因而在pH-电位图上是一条斜线,斜率为-2.303RT.m/23060n。常见的pH-电位图都是在指定有关物质活度时作出的,显然,这些平衡线的位置将随着有关物质的活度的改变而改变。对第(1)类平衡线而言,当A物质活度降低时,水平线向下平移,对于第(2)类平衡线而言,当A物质的活度降低时,垂直线向右平移。2.水的热力学稳定区水的热力学稳定区域对判断各种物质与水发生相互作用的可能性提供了理论依据,同时它又是pH-电位图的组成部分。水溶液中存在着氢离子和氢氧离子以及水分子。在给定条件下,如果水溶液中有电极电位比氧电极电位更正电性的氧化剂存在,水就可能被氧化,在酸性介质中决定于电化学反应O2+4H++4e=2H2O或碱性介质中决定于化学反应O2+2H2O+4e=2OH-的氧电极电位可以下式表示:Eh(O2/OH-)=1.23-0.059pH+0.015logPO2(4)如果溶液中有电极电位比氢电极电位更负的还原剂存在,还原过程就可能发生。在酸性介质中决定于化学反应2H++2e=H2或者在碱性介质中决定于电化学反应2H2O++2e=H2+2OH-的氢电极电位(25℃)可以下式表示:Eh(H+/H2)=-0.059pH-0.029logPH2(2)根据方程(4)、(5),在PO2和PH2各等于1大气压的条件下氢电极电位与氢电极电位与溶液的pH分别有如图2所示的直线①和②的关系。这两条直线把整个pH-电位图分成了Ⅰ、Ⅱ、Ⅲ三个区域。在①线之上发生氢氧根的氧化4O-→2H2O+O2+4e,因此,在①线之上区域,水不稳定,要分解析出氧。在线②以下,因为电位比平衡电位为负,发生H+离子还原,H++e→1/2H2,②线以下的区域,水也是不稳定的,要分解析出氢。在①线以下的区域,电位图2水的热力学稳定区比平衡电位为负,发生氧还原为氢氧根O2+2H2O+4e→4OH-,在②线以上,电位比平衡值为正,则发生氢的氧化,H2→2H++2e,可见在①线和②线包括的范围内,水是稳定的。3.土壤pH-电位图土壤中的氧化还原体系比较复杂。O2—H2O体系的反应式可表示如下:2H2OO2+4H++4e-,25℃时,其Eh=1.23-0.059pH+0.015logPO2。H2体系的反应式可表示如下:H22H++2e,25℃时,其Eh为:Eh=-0.059pH-0.0295logPH2。O2-H2O系和H2体系是组成土壤氧化还原的两个极端体系,土壤中其他氧化还原体系介于两者之间。这两个体系Eh与pH的关系是两个直线方程式,构成了土壤氧化还原电位上、下限。pH-电位图示于图3。土壤的pH-电位区域位于上、下限之间。图3土壤pH-电位图1、旱地土壤2、潮湿土壤3、水分过饱和土壤4.天然水体及土壤环境中的硫行为硫—H20系主要有以下反应:HSO4-H++SO42-(1)pH=1.9(25℃时)H2SH++HS-(2)pH=7.0HS-H++S2-(3)pH=12.6S0+4H2OSO42-+8H++6e(4)Eh=0.357-0.079pH+0.0098log[SO42-]S0+4H2OHSO4-+7H++6e(5)Eh=0.338-0.069pH+0.0098log[HSO42-]H2S+4H2OSO42-+10H++8e(6)[SO42-]Eh=0.303-0.074pH+0.0074log――――[H2S]H2SS0+2H++2e(7)Eh=0.142-0.059pH-0.0295log[H2S]HS-+4H2OSO42-+9H++8e(8)[SO42-]Eh=0.252-0.066pH+0.0074log――――[HS_]S2-+4H2OSO42-+8H++8e(9)[SO42-]Eh=0.159-0.059pH+0.0074log――――[S2_]根据以上九个反应的pH-电位图关系式可绘出25℃,总硫为10-3M时的pH-电位图(图4)。从图可看出,有一个素硫的稳定区。但当H2S浓度降低(7)式的电位变正,SO42-或HO42-浓度降低,(4)、(5)式的电位变负时,硫的稳定区缩小,最后消失到SO42-,HSO42-与H2S的界面。当绘制10-3M琉璃子浓度溶液的pH-电位图时可看出这一点。当pH1.9时,电位下降,HSO42-还原为元素S,电位进一步下降时还原成H2S;电位上升时H2S先被氧化成S,再氧化成HSO4-;pH在1.9至5.4范围内,电位下降时,SO42-还原成元素S,再还原为H2S;反之电位上升时,H2S氧化成S再氧化成SO42-。pH7时,电位下降时SO42-还原为HS-,电位上升时HS-氧化成SO42-。从图可见,天然水体的pH,Eh范围位于SO42-的稳定区,天然水体中的硫是以SO42-形式存在的。S2-不稳定,进入水体中的S2-很快被氧化SO42-。对天然水体的监测结果证实了这一点。在沉积物中,由于氧化还原电位较低,硫则多以金属硫化物的形态存在,有利于水体的净化。土壤中的硫对重金属的迁移和转化有重要意义。土壤中硫的含量一般为0.05%,以无机硫和有机硫两种形态存在,有机硫经微生物分解和矿化后,形成硫和多硫化物,在氧化条件下,形成硫酸盐形态,在较强的还原条件下,即成为硫化氢或金属硫化物。5.重金属及硫化物在天然水体及土壤环境中的行为天然水体的pH和Eh是控制和影响水体重金属稳定性最重要的环境因素。天然水体的氧化还原电位与水体pH密切相关。通常,沉积物/水界面的Eh梯度控制着水体重金属形态的变化,一般与大气压接触的表层水多呈氧化态,其Eh可为+300~+600毫伏,而沉积物则多为弱氧化态以至强还原态,其Eh为+100~-400毫伏。表层沉积物/水界面多呈弱氧化态,而深层沉积物则多处于还原态。水体pH的变化影响天然水体中各结合态金属的化学稳定性及金属的平衡分布状态。一般天然水体pH变化范围较大,可为5.0~8.0,沉积物pH与水体相关,表层沉积物通常为6.1~9.0,深层略低些。土壤环境中,成分复杂,化学反应纵横交错,重金属含量甚微却呈现多种化合态,参与多种化学反应。难以详细描述其化学行为。我们借鉴较单纯的水溶液pH-电位图,推断土壤溶液中重金属化学行为。重金属作为过渡元素在天然水体和土壤环境的不同条件下,价态变化是通过氧化还原反应实现的,反应方向由环境的氧化还原特性所支配。现以Hg、Cd、Cr、As、S为例,Hg、Cd、Cr、As等能形成难溶性的化合物,固定于沉积物或土壤中,反之转化为氧化条件时,则增加了它的可溶性。As等则完全相反。5.1汞的行为汞的pH-电位图(25℃)示于图5。从图5可见,汞在水溶液中的价态为Hg2+、Hg22+、Hg0(金属汞)。在还原区域中,不但可形成硫化物的沉淀物,而且还可还原成金属汞。当溶液中Cl-的浓度增大时,则HgCl2的区域增大,如图中虚线所示。天然水体中,含汞极少,一般不超过0.1ug/L,根据其pH、Eh范围可知,汞以Hg0或Hg2+的形式存在,电位下降,Hg2+还原为Hg0,电位上升Hg0氧化为Hg2+;在沉积物中则以HgS22-形式存在。土壤中可能存在金属汞及无机汞化合物:Hg0、HgS、HgCO3、HgHPO4、HgCl2、Hg(NO3)2,除HgCl2、Hg(NO3)2外大多数是难溶的,固定于土壤中。许多汞的化合物容易被土壤中还原性物质还原成金属汞。Hg22+→Hg2++Hg0。将土壤pH-电位图投影于汞的pH-电位图中,可见,石灰性旱地土壤可能以氢氧化汞一类的难溶性汞为主,或者按Hg(OH)2→HgO+H2O反应形成难溶氧化汞。从图还可看出,在水稻土中,有金属汞,还可能有少量硫化汞。此外,当污染土壤中氯离子含量增高时,导致可溶性HgCl2增多。淹水还原,降低土壤的Eh,有利于难溶性硫化汞生成。5.2镉的行为天然水体及土壤溶液中镉离子的浓度与土壤氧化还原电位密切相关。镉的pH-电位图(图6)清楚地表明镉的形态。在常见的天然水体pH及Eh范围内。镉大多都是以Cd2+形式存在。在沉积物中由于氧化还原电位降低则多以硫化物、碳酸盐和氢氧化物的形式出现,水体pH降低可导致碳酸盐和氢氧化物结合的镉溶解析出。在常见的土壤pH范围内,随着土壤氧化还原电位的降低,就可能形成难溶性的硫化镉,导致
本文标题:pH-电位图原理在环境化学中应用的探讨01
链接地址:https://www.777doc.com/doc-2886547 .html