您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > 数据库 > NoSQL(非关系型数据库)
四大分类键值(Key-Value)存储数据库这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。但是如果DBA只对部分值进行查询或更新的时候,Key/value就显得效率低下了。如:TokyoCabinet/Tyrant,Redis,Voldemort,OracleBDB.列存储数据库。这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra,HBase,Riak.文档型数据库文档型数据库的灵感是来自于LotusNotes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB,MongoDb.国内也有文档型数据库SequoiaDB,已经开源。图形(Graph)数据库图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。如:Neo4J,InfoGrid,InfiniteGraph.四大分类表格分析分类Examples举例典型应用场景数据模型优点缺点键值(key-value)TokyoCabinet/Tyrant,Redis,Voldemort,OracleBDB内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等等。Key指向Value的键值对,通常用hashtable来实现查找速度快数据无结构化,通常只被当作字符串或者二进制数据[列存储数据库Cassandra,HBase,Riak分布式的文件系统以列簇式存储,将同一列数据存在一起查找速度快,可扩展性强,更容易进行分布式扩展功能相对局限文档型数据库CouchDB,MongoDbWeb应用(与Key-Value类似,Value是结构化的,不同的是数据库能够了解Value的内容)Key-Value对应的键值对,Value为结构化数据数据结构要求不严格,表结构可变,不需要像关系型数据库一样需要预先定义表结构查询性能不高,而且缺乏统一的查询语法。图形(Graph)数Neo4J,社交网络,推荐图结构利用图结构很多时候需要据库InfoGrid,InfiniteGraph系统等。专注于构建关系图谱相关算法。比如最短路径寻址,N度关系查找等对整个图做计算才能得出需要的信息,而且这种结构不太好做分布式的集群方案。共同特征不要预定义模式:不需要事先定义数据模式,预定义表结构。数据中的每条记录都可能有不同的属性和格式。当插入数据时,并不需要预先定义它们的模式。无共享架构:相对于将所有数据存储的存储区域网络中的全共享架构。NoSQL往往将数据划分后存储在各个本地服务器上。因为从本地磁盘读取数据的性能往往好于通过网络传输读取数据的性能,从而提高了系统的性能。弹性可扩展:可以在系统运行的时候,动态增加或者删除结点。不需要停机维护,数据可以自动迁移。分区:对于将数据存放于同一个节点,NoSQL数据库需要将数据进行分区,将记录分散在多个节点上面。并且通常分区的同时还要做复制。这样既提高了并行性能,又能保证没有单点失效的问题。异步复制:和RAID存储系统不同的是,NoSQL中的复制,往往是基于日志的异步复制。这样,数据就可以尽快地写入一个节点,而不会被网络传输引起迟延。缺点是并不总是能保证一致性,这样的方式在出现故障的时候,可能会丢失少量的数据。BASE:相对于事务严格的ACID特性,NoSQL数据库保证的是BASE特性。BASE是最终一致性和软事务。适用场景1、数据模型比较简单;2、需要灵活性更强的IT系统;3、对数据库性能要求较高;4、不需要高度的数据一致性;5、对于给定key,比较容易映射复杂值的环境。MongoDBMongoDB是一个基于分布式文件存储的数据库。由C++语言编写。主要解决的是海量数据的访问效率问题,为WEB应用提供可扩展的高性能数据存储解决方案。当数据量达到50GB以上的时候,MongoDB的数据库访问速度是MySQL的10倍以上。MongoDB的并发读写效率不是特别出色,根据官方提供的性能测试表明,大约每秒可以处理0.5万~1.5万次读写请求。MongoDB还自带了一个出色的分布式文件系统GridFS,可以支持海量的数据存储。MongoDB也有一个Ruby的项目MongoMapper,是模仿Merb的DataMapper编写的MongoDB接口,使用起来非常简单,几乎和DataMapper一模一样,功能非常强大。MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。所谓“面向集合”(Collenction-Orented),意思是数据被分组存储在数据集中,被称为一个集合(Collenction)。每个集合在数据库中都有一个唯一的标识名,并且可以包含无限数目的文档。集合的概念类似关系型数据库(RDBMS)里的表(table),不同的是它不需要定义任何模式(schema)。模式自由(schema-free),意味着对于存储在mongodb数据库中的文件,我们不需要知道它的任何结构定义。如果需要的话,你完全可以把不同结构的文件存储在同一个数据库里。存储在集合中的文档,被存储为键-值对的形式。键用于唯一标识一个文档,为字符串类型,而值则可以是各中复杂的文件类型。我们称这种存储形式为BSON(BinarySerializeddOcumentFormat)。MongoDB服务端可运行在Linux、Windows或OSX平台,支持32位和64位应用,默认端口为27017。推荐运行在64位平台,因为MongoDB在32位模式运行时支持的最大文件尺寸为2GB。MongoDB把数据存储在文件中(默认路径为:/data/db),为提高效率使用内存映射文件进行管理。它的特点是高性能、易部署、易使用,存储数据非常方便。主要功能特性有:面向集合存储,易存储对象类型的数据。模式自由。支持动态查询。支持完全索引,包含内部对象。支持查询。支持复制和故障恢复。使用高效的二进制数据存储,包括大型对象(如视频等)。自动处理碎片,以支持云计算层次的扩展性。支持RUBY,PYTHON,JAVA,C++,PHP,C#等多种语言。文件存储格式为BSON(一种JSON的扩展)。可通过网络访问。CouchDBApacheCouchDB是一个面向文档的数据库管理系统。它提供以JSON作为数据格式的REST接口来对其进行操作,并可以通过视图来操纵文档的组织和呈现。CouchDB是Apache基金会的顶级开源项目。CouchDB是用Erlang开发的面向文档的数据库系统,其数据存储方式类似Lucene的Index文件格式。CouchDB最大的意义在于它是一个面向Web应用的新一代存储系统,事实上,CouchDB的口号就是:下一代的Web应用存储系统。主要功能特性:CouchDB是分布式的数据库,他可以把存储系统分布到n台物理的节点上面,并且很好的协调和同步节点之间的数据读写一致性。这当然也得以于Erlang无与伦比的并发特性才能做到。对于基于web的大规模应用文档应用,然的分布式可以让它不必像传统的关系数据库那样分库拆表,在应用代码层进行大量的改动。CouchDB是面向文档的数据库,存储半结构化的数据,比较类似lucene的index结构,特别适合存储文档,因此很适合CMS,电话本,地址本等应用,在这些应用场合,文档数据库要比关系数据库更加方便,性能更好。CouchDB支持RESTAPI,可以让用户使用JavaScript来操作CouchDB数据库,也可以用JavaScript编写查询语句,我们可以想像一下,用AJAX技术结合CouchDB开发出来的CMS系统会是多么的简单和方便。其实CouchDB只是Erlang应用的冰山一角,在最近几年,基于Erlang的应用也得到的蓬勃的发展,特别是在基于web的大规模,分布式应用领域,几乎都是Erlang的优势项目。HbaseHBase是一个分布式的、面向列的开源数据库,该技术来源于Changetal所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(FileSystem)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库.另一个不同的是HBase基于列的而不是基于行的模式。HBase–HadoopDatabase,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PCServer上搭建起大规模结构化存储集群。HBase是GoogleBigtable的开源实现,类似GoogleBigtable利用GFS作为其文件存储系统,HBase利用HadoopHDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用HadoopMapReduce来处理HBase中的海量数据;GoogleBigtable利用Chubby作为协同服务,HBase利用Zookeeper作为对应。HBase访问接口NativeJavaAPI,最常规和高效的访问方式,适合HadoopMapReduceJob并行批处理HBase表数据HBaseShell,HBase的命令行工具,最简单的接口,适合HBase管理使用ThriftGateway,利用Thrift序列化技术,支持C++,PHP,Python等多种语言,适合其他异构系统在线访问HBase表数据RESTGateway,支持REST风格的HttpAPI访问HBase,解除了语言限制Pig,可以使用PigLatin流式编程语言来操作HBase中的数据,和Hive类似,本质最终也是编译成MapReduceJob来处理HBase表数据,适合做数据统计Hive,当前Hive的Release版本尚没有加入对HBase的支持,但在下一个版本Hive0.7.0中将会支持HBase,可以使用类似SQL语言来访问HBase主要功能特性:支持数十亿行X上百万列采用分布式架构Map/reduce对实时查询进行优化高性能Thrift网关通过在server端扫描及过滤实现对查询操作预判支持XML,Protobuf,和binary的HTTP基于Jruby(JIRB)的shell对配置改变和较小的升级都会重新回滚不会出现单点故障堪比MySQL的随机访问性能CassandraCassandra是一个混合型的非关系的数据库,类似于Google的BigTable。其主要功能比Dynomite(分布式的Key-Value存储系统)更丰富,但支持度却不如文档存储MongoDB(介于关系数据库和非关系数据库之间的开源产品,是非关系数据库当中功能最丰富,最像关系数据库的。支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。)Cassandra最初由Facebook开发,后转变成了开源项目。它是一个网络社交云计算方面理想的数据库。以Amazon专有的完全分布式的Dynamo为基础,结合了Goo
本文标题:NoSQL(非关系型数据库)
链接地址:https://www.777doc.com/doc-2889824 .html