您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 七年级下册数学各章节知识点汇编
-1-七年级下册数学各章节知识点汇编第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。(反之,若两条直线只有一个交点,则这两条直线相交。)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。邻补角互补。要注意区分互为邻补角与互为补角的异同。对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。对顶角相等。注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。反过来亦成立。②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。例如:判断对错:因为∠ABC+∠DBC=180°,所以∠DBC是邻补角。()相等的两个角互为对顶角。()2、垂直是两直线相交的特殊情况。注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a。垂足:两条互相垂直的直线的交点叫垂足。垂直时,一定要用直角符号表示出来。过一点有且只有一条直线与已知直线垂直。(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。(或说直角三角形中,斜边大于直角边。)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。注:距离指的是垂线段的长度,而不是这条垂线段的本身。所以,如果在判断时,若没有“长度”两字,则是错误的。4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。特别注意:①三角形的三个内角均互为同旁内角;②同位角、内错角、同旁内角的称呼并不一定要建立在两条平行的直线被第三条直线所截的前提上才有的,这两条直线也可以不平行,也同样的有同位角、内错角、同旁内角。5、几何计数:①平面内n条直线两两相交,共有n(n–1)组对顶角。(或写成n^2–n组)②平面内n条直线两两相交,最多有n(n–1)/2个交点。(或写成(n^2–n)/2个)-2-③平面内n条直线两两相交,最多把平面分割成[n(n+1)/2]+1个面。④当平面内n个点中任意三点均不共线时,一共可以作n(n–1)/2条直线。回顾:ⅰ、一条直线上n个点之间,一共有n(n–1)/2条线段;ⅱ、若从一个点引出n条射线,则一共有n(n–1)/2个角。二、平行线同一平面内,两条直线若没有公共点(即交点),那么这两条直线平行。注:平行线永不相交。1、平行公理:过直线外一点,有且只有一条直线与已知直线平行。(注:这一点是在直线外)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。(或叫平行线的传递性)2、平行线的画法:借助三角板和直尺。具体略。(此基本作图方法一定要掌握,多练习。)3、平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。注意:是先看角如何,再判断两直线是否平行,前提是“角相等/互补”。一个重要结论:同一平面内,垂直于同一直线的两条直线互相平行。4、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。注意:是先有两直线平行,才有以上的性质,前提是“线平行”。一个结论:平行线间的距离处处相等。例如:应用于说明矩形(包括长方形、正方形)的对边相等,还有梯形的对角线把梯形分成分别以上底为底的两等面积的三角形,或以下底为底的两等面积的三角形。(因为梯形的上底与下底平行,平行线间的高相等,所以,就有等底等高的三角形。)※此章难度最大就在如何利用平行线的判定或性质来进行解析几何的初步推理,要在熟练掌握好基本知识点的基础上,学会逻辑推理,既要条理清晰,又要简洁明了。5、命题判断一件事情的语句叫命题。命题包括“题设”和“结论”两部分,可写成“如果……那么……”的形式。例如:“明天可能下雨。”这句语句______命题,而“今天很热,明天可能下雨。”这句语句_____命题。(填“是”或“不是”)①命题分为真命题与假命题,真命题指题设成立,结论也成立的命题(或说正确的命题)。假命题指题设成立,但结论不一定或根本不成立的命题(或说错误的命题)。②逆命题:将一个命题的题设与结论互换位置之后,形成新的命题,就叫原命题的逆命题。注:原命题是真命题,其逆命题不一定仍为真命题,同理,原命题为假命题,其逆命题也不一定为假命题。例如:“对顶角相等”是个真命题,但其逆命题“___________________________________”却是个假命题。-3-不论是真命题还是假命题,都要学会能非常熟练地把一个命题写成“如果……那么……”的形式。例:把“等角的补角相等”写成“如果……那么……”的形式为:_____________________________________________________。再例:把“三角形的内角和等于180度。”写成包含题设与结论的形式:__________________________________。三、平移1、概念:把图形的整体沿着某一方向移动一定的距离,得到一个新的图形,这种图形的移动,叫平移。确定平移,关键是要弄清平移的方向(并不一定是水平移动或垂直移动哦)与平移的距离。如果是斜着平移的,则需把由起始位置至最终位置拆分为先水平移动,再上下移动,或拆分为先上下移动,再水平移动。当然,如果是在格点图内平移,则可利用已知点的平移距离是某一矩形的对角线这一特点来对应完成其它顶点的平移。2、特征:①发生平移时,新图形与原图形的形状、大小完全相同(即:对应线段、对应角均相等);②对应点之间的线段互相平行(或在同一直线上)且相等,均等于平移距离。3、画法:掌握平移方向与平移距离,利用对应点(一般指图形的顶点)之间连线段平行、连线段相等性质描出原图形顶点的对应点,再依次连接,就形成平移后的新图形。第六章平面直角坐标系一、坐标1、数轴规定了原点、正方向、单位长度的直线叫数轴。数轴上的点可以用一个数来表示,这个数叫这个点在数轴上的坐标。数轴上的点与实数(包括有理数与无理数)一一对应,数轴上的每一个点都有唯一的一个数与之对应。2、平面直角坐标系由互相垂直、且原点重合的两条数轴组成。横向(水平)方向的为横轴(x轴),纵向(竖直)方向的为纵轴(y轴),平面直角坐标系上的任一点,都可用一对有序实数对来表示位置,这对有序实数对就叫这点的坐标。(即是用有顺序的两个数来表示,注:x在前,y在后,不能随意更改)坐标平面内的点与有序实数对是一一对应的,每一个点,都有唯一的一对有序实数对与之对应。二、象限及坐标平面内点的特点1、四个象限平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限(或第Ⅰ象限)、第二象限(或第Ⅱ象限)、第三象限(第Ⅲ象限)和第四象限(或第Ⅳ象限)。注:ⅰ、坐标轴(x轴、y轴)上的点不属于任何一个象限。例点A(3,0)和点B(0,-5)ⅱ、平面直角坐标系的原点发生改变,则点的坐标相应发生改变;坐标轴的单位长度发生改变,点的坐标也相应发生改变。2、坐标平面内点的位置特点①、坐标原点的坐标为(0,0);②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0(表示一条直线)-4-⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0(表示一条直线)例:若P(x,y),已知xy0,则P点在第____________象限,已知xy0,则P点在第____________象限。3、点到坐标轴的距离坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。例:点A(-3,7)表示到横轴的距离为_______,到纵轴的距离为_______;点B(-9,0)表示到横轴的距离为_______,到纵轴的距离为_______。注:①、已知点的坐标求距离,只有一个结果,但已知距离求坐标,则因为点的坐标有正有负,可能有多个解的情况,应注意不要丢解。例:点P(x,y)到x轴的距离是3,到y轴的距离是7,求点P的坐标为________________。再例:已知A(3,2),AB平行x轴,且AB=4,求B点的坐标为___________________。②、坐标平面内任意两点A(x1,y1)、B(x2,y2)之间的距离公式为:d=根号下[(x1-x2)^2+(y1-y2)^2]4、坐标平面内对称点坐标的特点①、一个点A(a,b)关于x轴对称的点的坐标为A'(a,-b),特点为:x不变,y相反;例:A(-3,5)关于x轴对称的点的坐标为A'(____,____)②、一个点A(a,b)关于y轴对称的点的坐标为A'(-a,b),特点为:y不变,x相反;例:A(-3,5)关于y轴对称的点的坐标为A'(____,____)③、一个点A(a,b)关于原点对称的点的坐标为A'(-a,-b),特点为:x、y均相反。例:A(-3,5)关于原点对称的点的坐标为A'(____,____)5、平行于坐标轴的直线的表示①、平行于横轴(x轴)的直线上的任意一点,其横坐标不同,纵坐标均相等,所以,可表示为:y=a(a为纵坐标)的形式,a的绝对值表示这条直线到x轴的距离,直线上两点之间的距离等于这两点横坐标之差的绝对值;②、平行于纵轴(y轴)的直线上的任意一点,其纵坐标不同,横坐标均相等,所以,可表示为:x=b(b为横坐标)的形式,b的绝对值表示这条直线到y轴的距离,直线上两点之间的距离等于这两点纵坐标之差的绝对值。例如:直线y=-5上与点A(-3,-5)距离为8的点P坐标为:________________________;直线x=6上与点B(6,7)距离为9的点K坐标为:_________________________。6、象限角平分线的特点①、第一、三象限的角平分线可表示为y=x的形式,即角平分线上的点的纵坐标与横坐标相等(同号);例:A(3,____)和B(-5,____)均在第一、三象限的角平分线上。②、第二、四象限的角平分线可表示为y=-x的形式,即角平分线的点的纵坐标与横坐标互为相反数(异号)。例A(-3,____)和B(5,____)均在第二、四象限的角平分线上。三、坐标方法的简单应用1、求面积①、已知三角形的顶点坐标求三角形的面积将坐标平面上的三角形的面积转化为几个图形的面积的组合(相加)或分解(相减),即将要求的三角形面积转化为一个大的多边形(例如矩形或梯形)与一个或几个较小的三角-5-形面积之差;例:ⅰ、已知平面直角坐标系中,点A(2,4),点B(6,2),求△AOB的面积?ⅱ、已知A(-4,3),B(0,0),C(-2,-1),求△ABC的面积?②、已知多边形各顶点坐标求多边形的面积将坐标平面上的多边形的面积分割成几个规则的图形组合的面积之和,或转化为一个更大的多边形(例如矩形或梯形)与一个或几个较小的三角形面积之差。例:顺次连接坐标平面上四点A(2,2)、B(-2,2)、C(-3,-2)、D(3,-2),求这个四边形的面积?2、平移①、点的平移一个点左、右(水平)平移,横坐标改变,纵坐标不变。具体为:向左平移几个单位,则横坐标减少几个单位;向右平移几个单位,则横坐标增加几个单位。“左减右加”一个点上、下(竖直)平移,纵坐标改变,横坐标不变。具体为:向下平移几个单位,则纵坐标减
本文标题:七年级下册数学各章节知识点汇编
链接地址:https://www.777doc.com/doc-2890325 .html