您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 缓冲齿轮精密冷锻工艺及模具
缓冲齿轮精密冷锻工艺及模具摘要:采用冷挤压预成形中间坯料,然后再精密墩锻成形的方式成功实施了摩托车缓冲齿轮的精密冷锻工艺。关键词:缓冲齿轮;冷锻一、前言缓冲齿轮是黄河一川崎250摩托车上一关键零件,其材料为20CrMo,形状尺寸如图1所示。该零件为轴对称形状,大端有一周渐开线直齿,小端有3个均布长齿,齿宽5mm,高15mm。用常规机械切削方法加工时,材料利用率低,所用铣刀细而长、切削量小且易折断,效率很低,难以满足生产要求。我们采用冷挤压技术成形该齿坯,使难以加工的长齿部分挤压成形,达到图纸要求,替代了普通的机加工方法,在生产中得到成功的应用。二、挤压性能分析与挤压件图设计该零件结构为轴对称形状,且不复杂;材料为20CrMo,退火状态硬度HB120-135,强度不高,变形抗力不大;但大端处一周渐开线齿不适合挤压成形,应留给后续机加工完成以保证其精度;所给缓冲齿轮的尺寸精度和表面粗糙度要求一般,冷挤零件的表面粗糙度可达Ra=0.8-0.4μm,公差等级在IT8-IT7左右,故冷挤压工艺完全可满足该零件的各项要求。按冷挤压工艺要求和零件形状所设计锻件如图2所示。三、成形工艺及参数该零件若采用φ56mm毛坯一次成形,没有入模角,造成压力过大,长齿不能成形,且易产生裂纹。其原因是由于长齿外圆处流动比φ26.5mm圆柱处慢很多,易使长齿被拉裂。当采用φ45mm坯料闭式墩挤成形时,更易出现芯部φ26.5mm圆柱部分流出过快而3长齿流出很慢,根本无法充满的状态,而且两者因流速差异太大而产生撕裂现象。该零件成熟的成形工序可分为两步。第1步先用φ42mm坯料正挤出直径为φ26.5mm的圆柱以及3条均布长齿。第2步再将坯料头部由φ42mm墩粗到φ58mm,并成形φ32mm的顶端圆台。应当说明的是当采用φ42mm坯料正挤成形时,虽然φ26.5mm的圆柱部分的流出速度仍然比3长齿部分的快,但差异较小,不会出现撕裂现象,因此预成形工艺得以顺利实施。由挤压件图可计算出制件体积v=42622mm,当毛坯直径为42mm时,高度应为31mm。由于挤压件长度方向不加约束,有一定的机加工量,加之挤出时26.5mm端部流动快,形成一个凸出的球面,增加了材料的消耗。调整后的毛坯高度为33mm。由文献[1][2][3]提供的挤压力计算方法可算出第1工序单位挤压力为1661.75MPa,总挤压力为2413.2kN。第2工序可看作闭式模锻,实验时在3000kN压力下可使锻件完全成形。综合以上两工序的压力情况,我们选择在3150kN油压机上实施该工艺。四、模具结构生产中我们采用通用反挤压模架,预成形和终成形工序的模芯结构简图分别如图3、图4所示。凸模1与凸模套2采用过盈配合,靠过盈量以保证凸模的固定和轴向限位。凸模组装时,先将凸模套加热至300℃左右,然后将凸模压入凸模套内。组合凹模采用典型的3层预应力结构。图3为冷挤压预成形模,其凹模设计为剖分结构,以避免裂纹的产生;下凹模入口部分设计有120°入模角,长齿入口处有R3的圆角,保证了金属的顺利流动;成形后长齿厚为4.9mm。图4为冷墩模,它的凹模也为剖分结构,但由于零件要求而不能设计入模角;凹模深度以刚能放下上工序成形的挤压件为准,3长齿处对应凹模槽比上序加宽0.1mm,为5.Omm,便于预成形件的对正放入。五、工艺过程及成形情况缓冲齿轮所采用的工艺流程如下:备料-软化退火-车毛坯-磷化+皂化处理-冷挤预成形-冷墩台阶面-去应力回火-入库。在第1序预成形后未进行退火是因为正挤压时头部几乎未变形,没产生加工硬化,第2序墩粗力也不大且没有产生裂纹。预成形过程中发现凹模拼合面处易脱开,常有余料挤入拼合处。克服这种情况的方法是在凹模制造过程中,将拼合面处仔细研磨,保证上下凹模的尖角不被碰坏。六、结论(1)用冷挤压工艺生产缓冲齿轮锻件工艺可靠;(2)材料利用率高;(3)两序压力均不超过3000kN,零件尺寸稳定,表面光洁度高。典型齿轮零件加工工艺分析引言冷冲压就是将各种不同规格的板料或坯料,利用模具和冲压设备(压力机,又名冲床)对其施加压力,使之产生变形或分离,获得一定形状、尺寸和性能的零件。一般生产都是采用立式冲床,因而决定了冲压过程的主运动是上下运动,另外,还有模具与板料和模具中各结构件之间的各种相互运动。机械运动可分为滑动、转动和滚动等三种基本运动形式,在冲压过程中都存在,但是各种运动形式的特点不同,对冲压的影响也各不相同。既然冲压过程存在如此多样的运动,在冲压模具设计中就应该对各种运动进行严格控制,以达到模具设计的要求;同时,在设计中还应当根据具体情况,灵活运用各种机械运动,以达到产品的要求。冲压过程的主运动是上下运动,但是在模具中设计斜楔结构、转销结构、滚轴结构和旋切结构等,可以相应把主运动转化为水平运动、模具中的转动和模具中的滚动。在模具设计中这些特殊结构是比较复杂和困难,成本也较高,但是为了达到产品的形状、尺寸要求,却不失为一种有效的解决方法。冲裁模具冲裁工艺的基本运动是卸料板先与板料接触并压牢,凸模下降至与板料接触并继续下降进入凹模,凸、凹模及板料产生相对运动导致板料分离,然后凸、凹模分开,卸料板把工件或废料从凸模上推落,完成冲裁运动。卸料板的运动是非常关键的,为了保证冲裁的质量,必须控制卸料板的运动,一定要让它先于凸模与板料接触,并且压料力要足够,否则冲裁件切断面质量差,尺寸精度低,平面度不良,甚至模具寿命减少。按通常的方法设计落料冲孔模具,往往冲压后工件与废料边难以分开。在不影响工件质量的前提下,可以采用在凸凹模卸料板上增加一些凸出的限位块,以使落料冲孔运动完成后,凹模卸料板先把工件从凹模中推出,然后凸凹模卸料板再把废料也从凸凹模上推落,这样一来,工件与废料也就自然分开了。对于一些有局部凸起的较大的冲压件,可以在落料冲孔模的凹模卸料板上增加压型凸模,同时施加足够的弹簧力,以保证卸料板上压型凸模与板料接触时先使材料变形达到压型目的,再继续落料冲孔运动,往往可以减少一个工步的模具,降低成本。有些冲孔模具的冲孔数量很多,需要很大冲压力,对冲压生产不利,甚至无足够吨位的冲床,有一个简单的方法,是采用不同长度的2~4批冲头,在冲压时让冲孔运动分时进行,可以有效地减小冲裁力。对那些在弯曲面上有位置精度要求高的孔(例如对侧弯曲上两孔的同心度等)的冲压件,如果先冲孔再弯曲是很难达到孔位要求的,必须设计斜楔结构,在弯曲后再冲孔,利用水平方向的冲孔运动可以达到目的。对那些翻边、拉深高度要求较严需要做修边工序的,也可以采用类似的结构设计。弯曲模具弯曲工艺的基本运动是卸料板先与板料接触并压死,凸模下降至与板料接触,并继续下降进入凹模,凸、凹模及板料产生相对运动,导致板料变形折弯,然后凸、凹模分开,弯曲凹模上的顶杆(或滑块)把弯曲边推出,完成弯曲运动。卸料板及顶杆的运动是非常关键的,为了保证弯曲的质量或生产效率,必须首先控制卸料板的运动,让它先于凸模与板料接触,并且压料力一定要足够,否则弯曲件尺寸精度差,平面度不良;其次,应确保顶杆力足够,以使它顺利地把弯曲件推出,否则弯曲件变形,生产效率低。对于精度要求较高的弯曲件,应特别注意一点,最好在弯曲运动中,要有一个运动死点,即所有相关结构件能够碰死。有些工件弯曲形状较奇特,或弯曲后不能按正常方式从凹模上脱落,这时,往往需要用到斜楔结构或转销结构,例如,采用斜楔结构,可以完成小于90度或回钩式弯曲,采用转销结构可以实现圆筒件一次成型。值得一提的是,对于有些外壳件,如电脑软驱外壳,因其弯曲边较长,弯头与板料间的滑动,在弯曲时,很容易擦出毛屑,材料镀锌层脱落,频繁抛光弯曲冲头效果也不理想。通常的做法是把弯曲冲头镀钛,提高其光洁度和耐磨性;或者在弯曲冲头R角处嵌入滚轴,把弯头与板料的弯曲滑动转化为滚动,由于滚动比滑动的摩擦力小得多,所以不容易擦伤工件。拉深模具拉深工艺的基本运动是,卸料板先与板料接触并压牢,凸模下降至与板料接触,并继续下降,进入凹模,凸、凹模及板料产生相对运动,导致板料体积成形,然后凸、凹模分开,凹模滑块把工件推出,完成拉深运动。卸料板和滑块的运动非常关键,为了保证拉深件的质量,必须控制卸料板的运动,让它先于凸模与板料接触,并且压料力要足够,否则拉深件容易起皱,甚至裂开;其次应确保凹模滑块压力足够,以保证拉深件底面的平面度。拉深复合模设计合理,可以很好地控制结构件的运动过程,达到多工序组合的目的。例如典型的落料拉深切边冲孔复合模具的设计。另外,有些装饰品和日用品的拉深件需要有卷边(或滚边)工序,模具设计中也用到了滚轴结构,所以在卷边过程中滚动的摩擦力非常小,不容易擦伤工件表面。对那些需要在马达中旋转的拉深结构件,切边的高度、跳动度等要求相当高,需要在模具中设计特别的旋切结构,利用旋转(切)运动修边,不仅能保证切边的尺寸精度高,甚至切边的毛刺及冲切纹路亦相当美观。值得一提的是,此旋切结构在实际设计改良后,已经非常易于模具加工制作,并且已运用于连续拉深模具当中。连续模具连续模具中常常同时包括了冲裁、弯曲和拉深等冲压工艺,因而其冲压过程中的机械运动也包括了这三种工艺的基本运动模式,对连续模具中运动的控制,应分成各基本工艺分别进行控制。通常连续模具要求不断加快冲压速度,提高生产效率,有些形状较复杂、较特别的冲压件,其冲压运动较费时,在连续模具设计中可以分解成效率较高的冲压运动。需要特别指出的是,连续模具因为在实际生产中还牵涉到送料机、吹风装置等,在设计中应充分考虑到这些因素,让冲床、模具、送料机和吹风装置的运动在时间上配合好,连续模具才能真正顺利生产。典型零件加工工艺(轴类,盘类,箱体类,齿轮类等)实际中,零件的结构千差万别,但其基本几何构成不外是外圆、内孔、平面、螺纹、齿面、曲面等。很少有零件是由单一典型表面所构成,往往是由一些典型表面复合而成,其加工方法较单一典型表面加工复杂,是典型表面加工方法的综合应用。下面介绍轴类零件、箱体类和齿轮零件的典型加工工艺。第一节轴类零件的加工一轴类零件的分类、技术要求轴是机械加工中常见的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等其中阶梯传动轴应用较广,其加工工艺能较全面地反映轴类零件的加工规律和共性。根据轴类零件的功用和工作条件,其技术要求主要在以下方面:⑴尺寸精度轴类零件的主要表面常为两类:一类是与轴承的内圈配合的外圆轴颈,即支承轴颈,用于确定轴的位置并支承轴,尺寸精度要求较高,通常为IT5~IT7;另一类为与各类传动件配合的轴颈,即配合轴颈,其精度稍低,常为IT6~IT9。⑵几何形状精度主要指轴颈表面、外圆锥面、锥孔等重要表面的圆度、圆柱度。其误差一般应限制在尺寸公差范围内,对于精密轴,需在零件图上另行规定其几何形状精度。⑶相互位置精度包括内、外表面、重要轴面的同轴度、圆的径向跳动、重要端面对轴心线的垂直度、端面间的平行度等。⑷表面粗糙度轴的加工表面都有粗糙度的要求,一般根据加工的可能性和经济性来确定。支承轴颈常为0.2~1.6μm,传动件配合轴颈为0.4~3.2μm。⑸其他热处理、倒角、倒棱及外观修饰等要求。二、轴类零件的材料、毛坯及热处理1.轴类零件的材料⑴轴类零件材料常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20CrMnTi、20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。⑵轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。2.轴类零件的热处理锻造毛坯在加工前,均需安排正火或退火处理,使钢材内部晶粒细化,消除锻造应力,降低材料硬度,改善切削加工性能。调质一般安排在粗车之后、半精车之前,以获得良好的物理力学性能。表面淬火一般安排在精加工之前,这样可以纠正因淬火引起的局部变形。精度要求高的轴,在局部淬火或粗磨之后,还需进行低温时效处
本文标题:缓冲齿轮精密冷锻工艺及模具
链接地址:https://www.777doc.com/doc-291419 .html