您好,欢迎访问三七文档
蛋白质存在于所有的生物细胞中,是构成生物体最基本的结构物质和功能物质。蛋白质是生命活动的物质基础,它参与了几乎所有的生命活动过程。第一章蛋白质(Protein)第一节概述一、蛋白质的定义蛋白质:是一切生物体中普遍存在的,由天然氨基酸通过肽键连接而成的生物大分子;其种类繁多,各具有一定的相对分子质量,复杂的分子结构和特定的生物功能;是表达生物遗传性状的一类主要物质。二、蛋白质在生命中的重要性早在1878年,思格斯就在《反杜林论》中指出:“生命是蛋白体的存在方式,这种存在方式本质上就在于这些蛋白体的化学组成部分的不断的自我更新。”可以看出,第一,蛋白体是生命的物质基础;第二,生命是物质运动的特殊形式,是蛋白体的存在方式;第三,这种存在方式的本质就是蛋白体与其外部自然界不断的新陈代谢。现代生物化学的实践完全证实并发展了恩格斯的论断1.蛋白质是生物体内必不可少的重要成分蛋白质占干重人体中(中年人)人体45%水55%细菌50%~80%蛋白质19%真菌14%~52%脂肪19%酵母菌14%~50%糖类<1%白地菌50%无机盐7%2.蛋白质是一种生物功能的主要体现者(1)酶的催化作用(2)调节作用(多肽类激素)(3)运输功能(4)运动功能(5)免疫保护作用(干扰素)(6)接受、传递信息的受体(7)毒蛋白3.外源蛋白质有营养功能,可作为生产加工的对象.三、蛋白质的组成1.元素组成蛋白质是一类含氮有机化合物,除含有碳、氢、氧外,还有氮和少量的硫。某些蛋白质还含有其他一些元素,主要是磷、铁、碘、碘、锌和铜等。这些元素在蛋白质中的组成百分比约为:碳50%氢7%氧23%氮16%硫0—3%其他微量氮占生物组织中所有含氮物质的绝大部分。因此,可以将生物组织的含氮量近似地看作蛋白质的含氮量。由于大多数蛋白质的含氮量接近于16%,所以,可以根据生物样品中的含氮量来计算蛋白质的大概含量★蛋白质含量的测定:凯氏定氮法(测定氮的经典方法)优点:对原料无选择性,仪器简单,方法也简单;缺点:易将无机氮(如核酸中的氮)都归入蛋白质中,不精确。一般,样品含氮量平均在16%,取其倒数100/16=6.25,即为蛋白质换算系数,其含义是样品中每存在1g元素氮,就说明含有6.25g蛋白质);故:※蛋白质含量=氮的量×100/16×6.25除了上法外,还有紫外比色法双缩脲法Folin—酚考马斯亮兰G—250比色法(条件:蛋白质必须是可溶的)2.化学组成(两种类型)单纯蛋白质:水解为α-氨基酸结合蛋白质=单纯蛋白质+辅基第二节氨基酸化学一、氨基酸的结构与分类(2).除甘氨酸外,其它所有氨基酸分子中的α-碳原子都为不对称碳原子,所以:A.氨基酸都具有旋光性。B.每一种氨基酸都具有D-型和L-型两种立体异构体。目前已知的天然蛋白质中氨基酸都为L-型。1.氨基酸的结构氨基酸是蛋白质水解的最终产物,是组成蛋白质的基本单位。从蛋白质水解物中分离出来的氨基酸有二十种,除脯氨酸和羟脯氨酸外,这些天然氨基酸在结构上的共同特点为:(1).与羧基相邻的α-碳原子上都有一个氨基,因而称为α-氨基酸COOHH2NCHα-碳原子基团RR基团α-氨基酸基本结构通式2.常见氨基酸的分类中性AA(1)按R基团的酸碱性分酸性AA碱性AA(2)按R基团的疏水性R基团AA电性质分不带电荷极性R基团的AA带电荷R基团的AA脂肪族A(3)按R基团的化学结构分芳香族AA杂环族AA3.构成蛋白质的20种氨基酸4.人体所需的八种必需氨基酸赖氨酸(Lys)缬氨酸(Val)蛋氨酸(Met)色氨酸(Try)亮氨酸(Leu)异亮氨酸(Ile)酪氨酸(Thr)苯丙氨酸(Phe)婴儿时期所需:精氨酸(Arg)、组氨酸(His)早产儿所需:色氨酸(Try)、半胱氨酸(Cys)5.几种重要的不常见氨基酸在少数蛋白质中分离出一些不常见的氨基酸,通常称为不常见蛋白质氨基酸。这些氨基酸都是由相应的基本氨基酸衍生而来的。其中重要的有4-羟基脯氨酸、5-羟基赖氨酸、N-甲基赖氨酸、和3,5-二碘酪氨酸等。这些不常见蛋白质氨基酸的结构如下NHHOCOOH4-羟基脯氨酸H2NCH2CHCH2CH2CHCOOHOHNH25-羟基赖氨酸NH2CH3NHCH2CHCH2CH2CHCOOH6-N-甲基赖氨酸HOIICH2CHCOOHNH23,5-二碘酪氨酸二.氨基酸的重要理化性质1.一般物理性质常见氨基酸均为无色结晶,其形状因构型而异(1)溶解性:各种氨基酸在水中的溶解度差别很大,并能溶解于稀酸或稀碱中,但不能溶解于有机溶剂。通常酒精能把氨基酸从其溶液中沉淀析出。(2)熔点:氨基酸的熔点极高,一般在200℃以上。(3)味感:其味随不同氨基酸有所不同,有的无味、有的为甜、有的味苦,谷氨酸的单钠盐有鲜味,是味精的主要成分。(4)旋光性:除甘氨酸外,氨基酸都具有旋光性,能使偏振光平面向左或向右旋转,左旋者通常用(-)表示,右旋者用(+)表示。(5)光吸收:构成蛋白质的20种氨基酸在可见光区都没有光吸收,但在远紫外区(220nm)均有光吸收。在近紫外区(220-300nm)只有酪氨酸、苯丙氨酸和色氨酸有吸收光的能力。酪氨酸的max=275nm,275=1.4x103;苯丙氨酸的max=257nm,257=2.0x102;色氨酸的max=280nm,280=5.6x103;2.氨基酸的离解性质氨基酸在结晶形态或在水溶液中,并不是以游离的羧基或氨基形式存在,而是离解成两性离子。在两性离子中,氨基是以质子化(-NH3+)形式存在,羧基是以离解状态(-COO-)存在。在不同的pH条件下,两性离子的状态也随之发生变化COOHCHH3N+R-pK1'+H+H+COO-CHH3N+RH+H++pK2'-COO-CHH2NRPH1710净电荷+10-1正离子两性离子负离子等电点PI3.氨基酸的等电点当溶液浓度为某一pH值时,氨基酸分子中所含的-NH3+和-COO-数目正好相等,净电荷为0。这一pH值即为氨基酸的等电点,简称pI。在等电点时,氨基酸既不向正极也不向负极移动,即氨基酸处于两性离子状态。侧链不含离解基团的中性氨基酸,其等电点是它的pK’1和pK’2的算术平均值:pI=(pK’1+pK’2)/2同样,对于侧链含有可解离基团的氨基酸,其pI值也决定于两性离子两边的pK’值的算术平均值。酸性氨基酸:pI=(pK’1+pK’R-COO-)/2硷性氨基酸:pI=(pK’2+pK’R-NH2)/24.氨基酸的化学性质(1)与茚三酮的反应(颜色反应)氨基酸与水合茚三酮共热,发生氧化脱氨反应,生成NH3与酮酸。水合茚三酮变为还原型茚三酮。加热过程中酮酸裂解,放出CO2,自身变为少一个碳的醛。水合茚三酮变为还原型茚三酮。NH3与水合茚三酮及还原型茚三酮脱水缩合,生成蓝紫色化合物。★★★反应要点A.该反应由NH2与COOH共同参与B.茚三酮是强氧化剂C.该反应非常灵敏,可在570nm测定吸光值D.测定范围:0.5~50µg/mlE.脯氨酸与茚三酮直接生成黄色物质(不释放NH3)应用:A.氨基酸定量分析(先用层析法分离)B.氨基酸自动分析仪:用阳离子交换树脂,将样品中的氨基酸分离,自动定性定量,记录结果。(2)与甲醛反应反应特点A.为α-NH2的反应B.在常温,中性条件,甲醛与α-NH2很快反应,生成羟甲基衍生物,释放氢离子。应用:氨基酸定量分析—甲醛滴定法(间接滴定)A.直接滴定,终点pH过高(12),没有适当指示剂。B.与甲醛反应,滴定终点在9左右,可用酚酞作指示剂。C.释放一个氢离子,相当于一个氨基(摩尔比1:1)D.简单快速,一般用于测定蛋白质的水解速度。(3)与2,4-二硝基氟苯(DNFB)反应反应特点A.为α-NH2的反应B.氨基酸α-NH2的一个H原子可被烃基取代(卤代烃)C.在弱碱性条件下,与DNFB发生芳环取代,生成二硝基苯氨基酸应用:鉴定多肽或蛋白质的N-末端氨基酸A.虽然多肽侧链上的ε-NH2、酚羟基也能与DNFB反应,但其生成物,容易与α-DNP氨基酸区分和分离★首先由Sanger应用,确定了胰岛素的一级结构A.B.水解DNP-肽,得DNP-N端氨基酸及其他游离氨基酸C.分离DNP-氨基酸D.由Edman于1950年首先提出为α-NH2的反应用于N末端分析,又称Edman降解法肽分子与DNFB反应,得DNP-肽层析法定性DNP-氨基酸,得出N端氨基酸的种类、数目(4)与异硫氰酸苯酯(PITC)的反应Edman(苯异硫氰酸酯法)氨基酸顺序分析法实际上也是一种N-端分析法。此法的特点是能够不断重复循环,将肽链N-端氨基酸残基逐一进行标记和解离。NCSNHCHCOR2NCHCOR1HHNHS:CCHCOR1HNNHCHCOR2SNHCNHOCR1CHNH2CHCOR2NCOCHNHSCR1•肽链(N端氨基酸)与PITC偶联,生成PTC-肽•环化断裂:最靠近PTC基的肽键断裂,生成PTC-氨基酸和少•一残基的肽链,同时PTC-氨基酸环化生成PTH-氨基酸•分离PTH-氨基酸•层析法鉴定Edman降解法的改进方法---DNS-Edman降解法用DNS(二甲基萘磺酰氯)测定N端氨基酸原理DNFB法相同但水解后的DNS-氨基酸不需分离,可直接用电泳或层析法鉴定由于DNS有强烈荧光,灵敏度比DNFB法高100倍,比Edman法高几到十几倍可用于微量氨基酸的定量用Edman降解法提供逐次减少一个残基的肽链灵敏度提高,能连续测定。多肽顺序自动分析仪样品最低用量可在5pmol(5)与荧光胺的反应•α-NH2的反应•氨基酸定量(6)与5,5’-双硫基-双(2-硝基苯甲酸)反应•-SH的反应•测定细胞游离-SH的含量(7)其他反应•成盐、成酯、成肽、脱羧反应第三节蛋白质的分子结构•蛋白质是由一条或多条多肽(polypeptide)链以特殊方式结合而成的生物大分子。•蛋白质与多肽并无严格的界线,通常是将分子量在6000道尔顿以上的多肽称为蛋白质。•蛋白质分子量变化范围很大,从大约6000到1000000道尔顿甚至更大一.基本问题---肽•一个氨基酸的氨基与另一个氨基酸的羧基之间失水形成的酰胺键称为肽键,所形成的化合物称为肽。•由两个氨基酸组成的肽称为二肽,由多个氨基酸组成的肽则称为多肽。组成多肽的氨基酸单元称为氨基酸残基。1.多肽在多肽链中,氨基酸残基按一定的顺序排列,这种排列顺序称为氨基酸顺序通常在多肽链的一端含有一个游离的-氨基,称为氨基端或N-端;在另一端含有一个游离的-羧基,称为羧基端或C-端。氨基酸的顺序是从N-端的氨基酸残基开始,以C-端氨基酸残基为终点的排列顺序。如上述五肽可表示为:Ser-Val-Tyr-Asp-GlnCCNCCNCCNCCNCCH2CHCH2CH2CH2COO-OHCO2HCH2CONH2OHCH3H3N+OOOOHHHHHHHHHSerValTyrAspGlnCH3N-端C-端肽键2.肽键•肽键的特点是氮原子上的孤对电子与羰基具有明显的共轭作用。•组成肽键的原子处于同一平面。•肽键中的C-N键具有部分双键性质,不能自由旋转。•在大多数情况下,以反式结构存在。3.天然存在的重要多肽•在生物体中,多肽最重要的存在形式是作为蛋白质的亚单位。•但是,也有许多分子量比较小的多肽以游离状态存在。这类多肽通常都具有特殊的生理功能,常称为活性肽。•如:脑啡肽;激素类多肽;抗生素类多肽;谷胱甘肽;蛇毒多肽等。NHCOCH2NHCOCHNHCOCH3CHCHOHCH2OHCHHNCNHCHCNHCH2CCOCHNHHOCH2NHNHCHCHCH3CH2CH3COOOOCH2CH2SOOH鹅膏覃碱的化学结构+H3N-Tyr-Gly-Gly-Phe-Met-COO-+H3N-Tyr-Gly-Gly-Phe-Leu-COO-Met-脑啡肽Leu-脑啡肽CysTyrILeGlnAsnCysProLeuGlyNH2SS牛催产素CysTyrGlnAsnCysProSSPheArgGlyNH2牛加压素二.蛋白质的一
本文标题:环境生物化学ppt
链接地址:https://www.777doc.com/doc-291645 .html