您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 3.10圆内接正多边形教案
3.10圆内接正多边形学习目标:1、理解圆内接正多边形及正多边形的外接圆、正多边形的中心、半径、边心距、中心角等概念。2、掌握用等分圆周画圆内接正多边形的方法,能熟练地进行有关正三角形,正方形,正六边形的计算。1学习过程:1、复习回顾正n边形的有关计算公式:每个内角=,每个外角=。2、预习、交流并展示阅读课本97页到98页,回答下列问题(1)都在同一个圆上的正多边形叫做,这个圆叫做该正多边形的。如上图,五边形ABCDE是☉O的,☉O是五边形ABCDE的圆,叫做正五边形ABCDE的中心,是正五边形ABCDE的半径,是正五边形ABCDE的中心角,中心角是(2)一个正多边形的外接圆的圆心叫做这个正多边形的,外接圆的半径叫做正多边形的,正多边形每一边所对的圆心角叫做正多边形的,正n边形的中心角是,中心到正多边形的一边的距离叫做正多边形的。度,OM⊥BC,垂足为M,是正五边形ABCDE的边心距。(3)利用尺规作一个已知圆的内接正多边形以圆内接正六边形为例:由于正六边形的中心角为,因此它的边长和外接圆的半径R,所以在半径为R的圆上,依次截取等于R的弦,就可以六等分圆,进而作出圆内接正多边形。作法如下:(1)☉O的任意一条直径AD,如图(1)(2)分别以A、D为圆心,以☉O的半径R为半径作弧,与☉O相交于B、F和C,E则A,B,C,D,E,F是☉O的六等分点。(3)顺次连接AB,BC,CD,DE,EF,FA,便得到正六边形ABCDEF,图(2)如图,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为G,求正六边形的中心角、边长和边心距。当堂训练:1、正六边形的边心距为2,则该正六边形的边长是。2、中心角为30度的圆内接正n边形的n为。4、求半径为6cm的圆内接正三角形的边长和边心距5、如图,把边长为6的正三角形剪去三个三角形得到一个正六边形DFHKGE,求这个正六边形的面积。3、6、如图,正五边形ABCDE内接于☉O,点F在劣弧AB上,求∠CFD的大小7、在圆中利用尺规做一个圆内接正八边形
本文标题:3.10圆内接正多边形教案
链接地址:https://www.777doc.com/doc-2926644 .html