您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 3.示范教案(2.1对数与对数运算第3课时)
第3课时指数与指数幂的运算(3)导入新课思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是——实数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题(指数与指数幂的运算(3))之无理数指数幂.思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本堂课的课题.推进新课新知探究提出问题①我们知道2=1.41421356…,那么1.41,1.414,1.4142,1.41421,…,是2的什么近似值?而1.42,1.415,1.4143,1.41422,…,是2的什么近似值?②多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律?2的过剩近似值552的近似值1.511.180339891.429.829353281.4159.7508518081.41439.739872621.414229.7386186431.4142149.7385246021.41421369.7385183321.414213579.7385178621.4142135639.7381775252的近似值2的不足近似值9.5182696941.49.6726699731.419.7351710391.4149.7383051741.41429.7384619071.4142139.7385089281.4142139.7385167651.41421359.7385177051.414213569.7385177361.414213562③你能给上述思想起个名字吗?④一个正数的无理数次幂到底是一个什么性质的数呢?如52,根据你学过的知识,能作出判断并合理地解释吗?⑤借助上面的结论你能说出一般性的结论吗?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:问题①从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.问题②对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.问题③上述方法实际上是无限接近,最后是逼近.问题④对问题给予大胆猜测,从数轴的观点加以解释.问题⑤在③④的基础上,推广到一般的情形,即由特殊到一般.讨论结果:①1.41,1.414,1.4142,1.41421,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.4143,1.41422,…,这些数都大于2,称2的过剩近似值.②第一个表:从大于2的方向逼近2时,52就从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向逼近52.第二个表:从小于2的方向逼近2时,52就从51.4,51.41,51.414,51.4142,51.41421,…,即小于52的方向逼近52.从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面52从51.4,51.41,51.414,51.4142,51.41421,…,即小于52的方向接近52,而另一方面52从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向接近52,可以说从两个方向无限地接近52,即逼近52,所以52是一串有理数指数幂51.4,51.41,51.414,51.4142,51.41421,…,和另一串有理数指数幂51.5,51.42,51.415,51.4143,51.41422,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示52的点靠近,但这个点一定在数轴上,由此我们可得到的结论是52一定是一个实数,即51.451.4151.41451.414251.41421…52…51.4142251.414351.41551.4251.5.充分表明52是一个实数.③逼近思想,事实上里面含有极限的思想,这是以后要学的知识.④根据②③我们可以推断52是一个实数,猜测一个正数的无理数次幂是一个实数.⑤无理数指数幂的意义:一般地,无理数指数幂aα(a0,α是无理数)是一个确定的实数.也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂.提出问题(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢?(3)你能给出实数指数幂的运算法则吗?活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳.对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明.对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通.对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了.讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱.(2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则:①ar·as=ar+s(a0,r,s都是无理数).②(ar)s=ars(a0,r,s都是无理数).③(a·b)r=arbr(a0,b0,r是无理数).(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂.实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质:①ar·as=ar+s(a0,r,s∈R).②(ar)s=ars(a0,r,s∈R).③(a·b)r=arbr(a0,b0,r∈R).应用示例思路1例1利用函数计算器计算.(精确到0.001)(1)0.32.1;(2)3.14-3;(3)3.143;(4)33.活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按键,再按幂指数2.1,最后按,即可求得它的值;对于(2),先按底数3.14,再按键,再按负号键,再按3,最后按即可;对于(3),先按底数3.1,再按键,再按34,最后按即可;对于(4),这种无理指数幂,可先按底数3,其次按键,再按键,再按3,最后按键.有时也可按或键,使用键上面的功能去运算.学生可以相互交流,挖掘计算器的用途.答案:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3)3.143≈2.336;(4)33≈6.705.点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可.例2求值或化简.(1)3224abba(a0,b0);(2)(41)21213321)()1.0()4(baab(a0,b0);(3)246347625.活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律.解:(1)3224abba=2224ba(a31b32)21=a-2ba61b31=a611b34=61134ab.点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.(2)(41)212133231)()1.0()4(baab=223211044a23a23b23b23=254a0b0=254.点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数.(3)246347625=222)22()32()23(=3-2+2-3-2+2=0.点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.例3已知x=21(5n1-5n1),n∈N*,求(x+2x1)n的值.活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性,5n1与5n1具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示.x2=41(5n1-5n1)2=41(5n2-2·50+5n2)=41(5n2+2+5n2-4)=41(5n1+5n1)2-1.这时应看到1+x2=1+41(n1-5n1)2=41(5n1+5n1)2,这样先算出1+x2,再算出2x1,带入即可.解:将x=21(5n1-5n1)代入1+x2,得1+x2=1+41(5n1-5n1)2=41(5n1+5n1)n,所以(x+2x1)n=[21(5n1-5n1)+211)55(41nn]n=[21(5n1-5n1)+21(5n1+5n1)]n=(5n1)n=5.点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法.思路2例1计算:(1)105432)(0625.0833416;(2)12532+(21)-2+34331-(271)31;(3)(-2x41y31)(3x21y32);(4)(x21-y21)÷(x41-y41).活动:学生观察、思考,根式化成分数指数,利用幂的运算性质解题,另外要注意整体的意识,教师有针对性的提示引导,对(1)根式的运算常常化成幂的运算进行,对(2)充分利用指数幂的运算法则来进行,对(3)则要根据单项式乘法和幂的运算法则进行,对(4)要利用平方差公式先因式分解,并对学生作及时的评价.解:(1)105432)(0625.0833416=(425)21+(827)31+(0.0625)41+1-21=(25)2×21+(23)313+(0.5)414+21=25+23+0.5+21=5;(2)12532+(21)-2+34331-(271)31=(53)32+(2-1)-2+(73)31-(3-3)31=5323+2-2×(-1)+7313-3)31(3=25+4+7-3=33;(3)(-2x41y31)(3x21y32)=(-2×3)(x41x21·y31y32)=323121416yx=-6x43y31=3436yx;(4)(x21-y21)÷(x41-y41)=((x41)2-(y41)2)÷
本文标题:3.示范教案(2.1对数与对数运算第3课时)
链接地址:https://www.777doc.com/doc-2927402 .html