您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 2015届高考数学一轮总复习10-6排列与组合课后强化作业(新人教A版)
淘宝网·营丘书社地址:httpyqshushe.taobao.com淘宝网·营丘书社地址:httpyqshushe.taobao.com【走向高考】2015届高考数学一轮总复习10-6排列与组合课后强化作业新人教A版基础巩固强化一、选择题1.(2013·哈尔滨模拟)如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有()A.9种B.11种C.13种D.15种[答案]C[解析]有一个点脱落时有2种,有两个点脱落时有C24=6种,有三个点脱落时有C34=4种,四个点都脱落时有1种,共有2+6+4+1=13种.2.(2013·河北沧州一模)10名同学合影,站成了前排3人,后排7人.现摄影师要从后排7人中抽2个站前排,其他人的相对顺序不变,则不同调整方法的种数为()A.C27A55B.C27A22C.C27A25D.C27A35[答案]C[解析]从后排抽2人的方法种数是C27;前排的排列方法种数是A25,由分步乘法计数原理知不同调整方法种数是C27A25.3.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为()A.16B.18C.24D.32[答案]C[解析]若将7个车位从左向右按1~7进行编号,则该3辆车有4种不同的停放方法:(1)停放在1~3号车位;(2)停放在5~7号车位;(3)停放在1、2、7号车位;(4)停放在1、6、7号车位.每一种停放方法均有A33=6种,故共有24种不同的停放方法.4.(2013·海口模拟)某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加淘宝网·营丘书社地址:httpyqshushe.taobao.com淘宝网·营丘书社地址:httpyqshushe.taobao.com一个社团.且其中甲不参加“围棋苑”,则不同的参加方法的种数为()A.72B.108C.180D.216[答案]C[解析]设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C14种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有C24A33种方法,故共有C14C24A33种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C24种方法,甲与丁、戊分配到其他三个社团中有A33种方法,这时共有C24A33种参加方法;综合(1)(2),共有C14C24A33+C24A33=180种参加方法.[解法探究]由于甲是特殊元素,故按甲进行分类.第一类,甲自己去一个社团,有C13种选法,将其余4人中选2人有C24种选法,将这2人和其余2人分派到三个社团共有A33种方法,∴共有C13C24A33=108种.第二类,甲与另外一人同去一个社团,先安排甲有C13种选法,然后将剩余4人分派到四个社团有A44种,∴共有C13A44=72种,∴总共有108+72=180种参加方法.5.(2013·四川理,8)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a、b,共可得到lga-lgb的不同值的个数是()A.9B.10C.18D.20[答案]C[解析]解法1:记基本事件为(a,b),则基本事件构成的集合为Ω={(1,3),(1,5),(1,7),(1,9),(3,1),(3,5),(3,7),(3,9),(5,1),(5,3),(5,7),(5,9),(7,1),(7,3),(7,5),(7,9),(9,1),(9,3),(9,5),(9,7)}共有20个基本事件,而lga-lgb=lgab,其中基本事件(1,3),(3,9)和(3,1),(9,3)使lgab的值相等,则不同值的个数为20-2=18(个),故选C.解法2:由于lg1-lg3=lg3-lg9,lg3-lg1=lg9-lg3,所以共有不同值A25-2=18个.6.一次演出,原计划要排4个节目,因临时有变化,拟再添加2个小品节目,若保持原有4个节目的相对顺序不变,则这6个节目不同的排列方法有()A.30种B.25种C.24种D.20种[答案]A[解析]原来4个节目的相对顺序不变,故4个节目形成5个空档,将这两个节目插淘宝网·营丘书社地址:httpyqshushe.taobao.com淘宝网·营丘书社地址:httpyqshushe.taobao.com入.(一)当两节目不相邻时,有A25=20种选法,(二)当两节目相邻时,有A22·C15=10种排法,∴共有20+10=30种不同排法.二、填空题7.由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)[答案]72[解析]首位数字是奇数时有A33·A33种排法,首位数字是偶数时也有A33·A33种排法,所以一共可以组成2A33·A33=72个奇偶数字相间且无重复数字的六位数.8.某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.[答案]72[解析]依题意,按花圃的5个部分实际栽种花的颜色种数进行分类计数:第一类,花圃的5个部分实际栽种花的颜色种数是3时,满足题意的方法数共有A34=24种;第二类,花圃的5个部分实际栽种花的颜色种数是4时,满足题意的方法数共有A44×2=48种.因此,满足题意的方法数共有24+48=72种.9.将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A班,那么不同的分配方案有________.[答案]24种[解析]将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排一名学生有C24A33种分配方案,其中甲同学分配到A班共有C23A22+C13A22种方案.因此满足条件的不同方案共有C24A33-C23A22-C13A22=24(种).10.某农科院在3行3列9块试验田中选出3块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为________.[答案]114[解析]如图,由于每行每列都有一块试验田种植水稻,∴当1处种植水稻时,只能是(1,5,9)或(1,6,8),依此可列出所有可能种植方法为:(1,5,9),(1,6,8),(2,6,7),(2,4,9),(3,5,7),(3,4,8),共6种,又从9块试验田中选3块的选法为C39,淘宝网·营丘书社地址:httpyqshushe.taobao.com淘宝网·营丘书社地址:httpyqshushe.taobao.com123456789∴所求概率为P=6C39=114.能力拓展提升一、选择题11.一个质地均匀的正方体骰子,其六个面上的点数分别为1、2、3、4、5、6,将这颗骰子连续投掷三次,观察向上的点数,则三次点数依次成等比数列的概率为()A.1108B.1216C.136D.127[答案]D[解析]连续抛掷三次骰子可得结果为63=216种,其中依次构成等比数列的情况有(1)公比为1,共6种.(2)公比为2,只有1种,即1,2,4,.(3)公比为12,只有1种,即4,2,1.∴共有8种,∴P=8216=127.12.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12D.15[答案]B[解析]与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有C24=6(个)第二类:与信息0110有一个对应位置上的数字相同有C14=4(个)第三类:与信息0110没有一个对应位置上的数字相同有C04=1(个)与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11(个)13.(2013·杭州模拟)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60B.48淘宝网·营丘书社地址:httpyqshushe.taobao.com淘宝网·营丘书社地址:httpyqshushe.taobao.comC.36D.24[答案]B[解析]长方体中,含有四个顶点的平面有两类.第一类侧面、底面,对其中每一个面(如底面ABCD),与其平行的直线有6条,共有6×6=36个“平行线面组”;第二类对角面,对其中每一个面与其平行的直线有2条,共有6×2=12个“平行线面组”.∴共有36+12=48个,选B.二、填空题14.在空间直角坐标系O-xyz中有8个点:P1(1,1,1)、P2(-1,1,1)、…、P7(-1,-1,-1)、P8(1,-1,-1)(每个点的横、纵、竖坐标都是1或-1),以其中4个点为顶点的三棱锥一共有________个(用数字作答).[答案]58[解析]这8个点构成正方体的8个顶点,此题即转化成以正方体的8个顶点中的4个点为顶点的三棱锥一共有多少个.从正方体的8个顶点中任取4个,有不同取法C48种,其中这四点共面的(6个对角面、6个表面)共12个,∴这样的三棱锥有C48-12=58个.15.(2013·潍坊五校联考)数字1,2,3,4,5,6按如图形式随机排列,设第一行这个数为N1,N2、N3分别表示第二、三行中的最大数,则满足N1N2N3的所有排列的个数是________.[答案]240[解析]由题意知6必在第三行,安排6有C13种方法,第三行中剩下的两个空位安排数字有A25种方法,在留下的三个数字中,必有一个最大数,把这个最大数安排在第二行,有C12种方法,剩下的两个数字有A22种排法,按分步计数原理,所有排列的个数是C13×A25×C12×A22=240.三、解答题淘宝网·营丘书社地址:httpyqshushe.taobao.com淘宝网·营丘书社地址:httpyqshushe.taobao.com16.(2012·合肥调研)要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男生甲、女生乙至少有一个人入选.[解析](1)间接法.从12人中选5人有C512种选法,这5人全为男生的选法有C57种,∴不同选法有C512-C57=771(种).(2)按“至多有2名女生”分类:2名女生有C25C37种,1名女生有C15C47种,无女生有C57种,∴共有不同选法C25C37+C15C47+C57=546(种).(3)只需再从剩余10人中选取3人,不同选法共有C310=120(种).(4)间接法.C512-C310=672(种).(5)间接法.男甲与女乙都不入选时有C510种,∴共有不同选法C512-C510=540(种).考纲要求1.理解分类加法计数原理和分步乘法计数原理.2.理解排列、组合的概念.3.能利用计数原理推导排列数公式、组合数公式.4.会用分类加法计数原理、分步乘法计数原理和排列组合知识解决一些简单的实际问题.补充说明1.排列、组合问题的类型及解答策略排列、组合问题,通常都是以选择题或填空题的形式出现在试卷上,它联系实际,生动有趣;但题型多样,解法灵活.实践证明,备考有效的方法是将题型与解法归类,识别模式、熟练运用.下面介绍常见排列组合问题的解答策略.(1)相邻元素捆绑法.在解决某几个元素必须相邻问题时,可整体考虑将相邻元素视为一个元素参与排列.[例1](2012·山西四校联考)有七名同学站成一排照相,
本文标题:2015届高考数学一轮总复习10-6排列与组合课后强化作业(新人教A版)
链接地址:https://www.777doc.com/doc-2946491 .html