您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2016初中数学中考指导二轮复习锦囊专题四探究型问题
专题四探究型问题一、中考专题诠释探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、中考考点精讲考点一:条件探索型:此类问题结论明确,而需探究发现使结论成立的条件.例1(2015·湖北省随州市,第24题10分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)考点:四边形综合题.分析:【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可得出EF=BE+FD.解答:【发现证明】证明:如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∴∠GAF=∠FAE,在△GAF和△FAE中,,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109.2(米),即这条道路EF的长约为109.2米.点评:此题主要考查了四边形综合题,关键是正确画出图形,证明△AFG≌△AEF.此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.对应训练1.(2013•襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.思路分析:(1)根据等边三角形的性质可得AB=AD,AE=AC,∠BAD=∠CAE=60°,然后求出∠BAE=∠DAC,再利用“边角边”证明△BAE和△DAC全等,根据全等三角形对应边相等即可得证;(2)①求出∠DAE,即可得到旋转角度数;②当AC=2AB时,△BDD′与△CPD′全等.根据旋转的性质可得AB=BD=DD′=AD′,然后得到四边形ABDD′是菱形,根据菱形的对角线平分一组对角可得∠ABD′=∠DBD′=30°,菱形的对边平行可得DP∥BC,根据等边三角形的性质求出AC=AE,∠ACE=60°,然后根据等腰三角形三线合一的性质求出∠PCD′=∠ACD′=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等.解答:(1)证明:∵△ABD和△ACE都是等边三角形.∴AB=AD,AE=AC,∠BAD=∠CAE=60°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC,在△BAE和△DAC中,ABADBAEDACAEAC,∴△BAE≌△DAC(SAS),∴BE=CD;(2)解:①∵∠BAD=∠CAE=60°,∴∠DAE=180°-60°×2=60°,∵边AD′落在AE上,∴旋转角=∠DAE=60°;②当AC=2AB时,△BDD′与△CPD′全等.理由如下:由旋转可知,AB′与AD重合,∴AB=BD=DD′=AD′,∴四边形ABDD′是菱形,∴∠ABD′=∠DBD′=12∠ABD=12×60°=30°,DP∥BC,∵△ACE是等边三角形,∴AC=AE,∠ACE=60°,∵AC=2AB,∴AE=2AD′,∴∠PCD′=∠ACD′=12∠ACE=12×60°=30°,又∵DP∥BC,∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,在△BDD′与△CPD′中,DBDPCDBDCDBDDPDC,∴△BDD′≌△CPD′(ASA).故答案为:60.点评:本题考查了全等三角形的判定与性质,等边三角形的性质,以及旋转的性质,综合性较强,但难度不大,熟练掌握等边三角形的性质与全等三角形的判定是姐提到过.考点二:结论探究型:此类问题给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论.例2(2015•辽宁省朝阳,第24题12分)问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.[探究发现]小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌△CDE,得EH=ED.在Rt△HBE中,由勾股定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是AD2+EB2=DE2.[实践运用](1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.考点:几何变换综合题.分析:(1)根据正方形的性质和全等三角形的判定方法证明Rt△ABE≌Rt△AGE和Rt△ADF≌Rt△AGF,由全等三角形的性质即可求出∠EAF=∠BAD=45°;(2)由(1)知,Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,设AG=x,则CE=x﹣2,CF=x﹣3.因为CE2+CF2=EF2,所以(x﹣2)2+(x﹣3)2=52.解这个方程,求出x的值即可得到AG=6,在(2)中,MN2=MB2+ND2,MN=a,,所以a=.即MN=.解答:解:根据“边角边”,可证△CEH≌△CDE,得EH=ED.在Rt△HBE中,由勾股定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是AD2+EB2=DE2;故答案为:△CDE;勾股;AD2+EB2=DE2;(1)在Rt△ABE和Rt△AGE中,,∴Rt△ABE≌Rt△AGE(HL),∴∠BAE=∠GAE,同理,Rt△ADF≌Rt△AGF,∴∠GAF=∠DAF,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAF=∠BAD=45°;(2)由(1)知,Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,∴BE=EG=2,DF=FG=3,则EF=5,设AG=x,则CE=x﹣2,CF=x﹣3,∵CE2+CF2=EF2,∴(x﹣2)2+(x﹣3)2=52,解这个方程,得x1=6,x2=﹣1(舍去),∴AG=6,∴BD=,∴AB=6,∵MN2=MB2+ND2设MN=a,则,所以a=,即MN=.点评:本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质以及勾股定理的运用和一元二次方程的运用,题目的综合性很强,难度不小.对应训练2.(2015•辽宁铁岭)(第25题)已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;(3)若BD=CD,直接写出∠BAD的度数.考点:几何变换综合题..分析:(1)根据等腰直角三角形的性质可得∠ABC=∠ACB=45°,再根据旋转性质可得AD=AE,∠DAE=90°,然后利用同角的余角相等求出∠BAD=∠CAE,然后利用“边角边”证明△BAD和△CEF全等,从而得证;(2)将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.与(1)同理可得CE=BD,CE⊥BD,根据勾股定理即可求得2AD2=BD2+CD2;(3)分两种情况分别讨论即可求得.解答:(1)证明:如图1,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵∠DAE=90°,∴∠DAE=∠CAE+∠DAC=90°,∵∠BAC=∠BAD+∠DAC=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABC=45°.∴∠BCE=∠ACB+∠ACE=90°,∴BD⊥CE;(2)2AD2=BD2+CD2,理由:如
本文标题:2016初中数学中考指导二轮复习锦囊专题四探究型问题
链接地址:https://www.777doc.com/doc-2966093 .html