您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2013年福建省泉州市晋江市中考数学试卷(解析版)
第1页共15页2013年福建省泉州市晋江市中考数学试卷(解析版)一.选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.1.(2013晋江市)﹣2013的绝对值是()A.2013B.﹣2013C.D.考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣2013的绝对值是2013.故选A.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2013晋江市)如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=()A.40°B.50°C.100°D.130°考点:平行线的性质.分析:根据两直线平行,同位角相等可得∠1=∠2,进而得到∠2=50°.解答:解:∵a∥b,∴∠1=∠2,∵∠1=50°,∴∠2=50°,故选:B.点评:此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.3.(2013晋江市)计算:2x3x2等于()A.2B.x5C.2x5D.2x6考点:单项式乘单项式.分析:根据单项式乘单项式的法则进行计算即可.解答:解:2x3x2=2x5.故选C.点评:此题考查了单项式乘单项式,用到的知识点是单项式的乘法法则,是一道基础题,计算时要注意指数的变化.4.(2013晋江市)已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A.1B.﹣1C.9D.﹣9考点:一元一次方程的解.专题:计算题.分析:将x=﹣2代入方程即可求出a的值.解答:解:将x=﹣2代入方程得:﹣4﹣a﹣5=0,解得:a=﹣9.故选D点评:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.第2页共15页5.(2013晋江市)若反比例函数的图象上有两点P1(2,y1)和P2(3,y2),那么()A.y1<y2<0B.y1>y2>0C.y2<y1<0D.y2>y1>0考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象的增减性做出正确的判定.解答:解:∵反比例函数解析式中的2>0,∴该反比例函数的图象位于第一、三象限,且在每一象限内y的值随x的增大而减小.又∵点P1(2,y1)和P2(3,y2)都位于第一象限,且2<3,∴y1>y2>0.故选B.点评:本题考查了反比例函数图象上点的坐标特征.反比例函数图象上点的坐标都满足该函数解析式.6.(2013晋江市)如图,是由一个长方体和一个圆锥体组成的立体图形,其正视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的正面看可得一个三角形和一个矩形,故选:D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.(2013晋江市)如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A.45°B.60°C.90°D.120°考点:旋转的性质;正方形的性质.分析:首先作出旋转中心,根据多边形的性质即可求解.解答:解:如图,连接AC、BD,AC与BD的交点即为旋转中心O.根据旋转的性质知,点C与点D对应,则∠DOC就是旋转角.∵四边形ABCD是正方形.∴∠DOC=90°.第3页共15页故选C.点评:本题主要考查了旋转的性质,以及正多边形的性质,正确理解正多边形的性质以及旋转角(对应点与旋转中心所连线段的夹角等于旋转角)是解题的关键.二.填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.(2013晋江市)化简:﹣(﹣2)=.考点:相反数.分析:根据相反数的定义解答即可.解答:解:﹣(﹣2)=2.故答案为:2.点评:本题考查了相反数的定义,是基础题.9.(2013晋江市)因式分解:4﹣a2=.考点:因式分解-运用公式法.分析:利用平方差公式a2﹣b2=(a﹣b)(a+b),把4﹣a2写成22﹣a2的形式即可.解答:解:4﹣a2=(2+a)(2﹣a).故答案为:(2+a)(2﹣a).点评:本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键,是一道基础题,比较简单.10.(2013晋江市)从2013年起,泉州市财政每年将安排50000000元用于建设“美丽乡村”.将数据50000000用科学记数法表示为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将50000000用科学记数法表示为:5×107.故答案为:5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2013晋江市)计算:=.考点:分式的加减法.专题:计算题.分析:先通分,再加减,然后约分.解答:解:原式=﹣==1.点评:本题考查了分式的加减,学会通分是解题的关键.12.(2013晋江市)不等式组的解集是.考点:解一元一次不等式组.专题:计算题.分析:分别求出每个不等式的解集,然后求它们的交集,即为不等式组的解集.解答:解:由①得:x>﹣1第4页共15页由②得:x≤2解集为﹣1<x≤2.点评:注意各个不等式的解集的公式部分就是这个不等式组的解集.13.(2013晋江市)某班派5名同学参加数学竞赛,他们的成绩(单位:分)分别为:80,92,125,60,97.则这5名同学成绩的中位数是分.考点:中位数.分析:根据中位数的定义先把这组数据从小到大排列,再找出最中间的数即可.解答:解:将这组数据从小到大排列为:60,80,92,97,125,最中间的数是92,则这5名同学成绩的中位数是92;故答案为:92.点评:此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).14.(2013晋江市)正六边形的每个内角的度数是度.考点:多边形内角与外角.专题:计算题.分析:利用多边形的内角和为(n﹣2)•180°求出正六边形的内角和,再结合其边数即可求解.解答:解:根据多边形的内角和定理可得:正六边形的每个内角的度数=(6﹣2)×180°÷6=120°.点评:本题需仔细分析题意,利用多边形的内角和公式即可解决问题.15.(2013晋江市)如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,则∠B=°.考点:等腰三角形的性质.分析:根据等边对等角可得∠B=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵AB=AC,∴∠B=∠C,∴∠DAC=∠B+∠C=2∠B,∵∠DAC=130°,∴∠B=×130°=65°.故答案为:65.点评:本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质是解题的关键.16.(2013晋江市)若a+b=5,ab=6,则a﹣b=.考点:完全平方公式.分析:首先根据完全平方公式将(a﹣b)2用(a+b)与ab的代数式表示,然后把a+b,ab的值整体代入求值.解答:解:(a﹣b)2=(a+b)2﹣ab=52﹣4×6=1,则a﹣b=±1.故答案是:±1.第5页共15页点评:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.17.(2013晋江市)如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC中点时,DE=;(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=时,⊙C与直线AB相切.考点:切线的性质;含30度角的直角三角形;勾股定理;三角形中位线定理;分类讨论.分析:(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可;(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.解答:解:(1)∵∠C=90°,∠A=30°,,∴BC=AB=2,AC=6,∵∠C=90°,DE⊥AC,∴DE∥BC,∵D为AC中点,∴E为AB中点,∴DE=BC=,故答案为:;(2)过C作CH⊥AB于H,∵∠ACB=90°,BC=2,AB=4,AC=6,∴由三角形面积公式得:BC•AC=AB•CH,CH=3,分为两种情况:①如图1,∵CF=CH=3,∴AF=6﹣3=3,∵A和F关于D对称,∴DF=AD=,∵DE∥BC,∴△ADE∽△ACB,∴=,∴=,DE=;②如图2,∵CF=CH=3,∴AF=6+3=9,第6页共15页∵A和F关于D对称,∴DF=AD=4.5,∵DE∥BC,∴△ADE∽△ACB,∴=,∴=,DE=;故答案为:或点评:本题考查了三角形的中位线,含30度角的直角三角形性质,相似三角形的性质和判定等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.三.解答题(共89分)在答题卡上相应题目的答题区域内作答.18.(2013晋江市)计算:.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式==1+1﹣2+4=4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、负指数幂、绝对值、二次根式化简等考点的运算.19.(2013晋江市)先化简,再求值:(x+3)2﹣x(x﹣5),其中.考点:整式的混合运算—化简求值.专题:计算题.第7页共15页分析:原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算,去括号合并得到最简结果,将x的值代入计算即可求出值.解答:解:原式=x2+6x+9﹣x2+5x=11x+9,当x=﹣时,原式=11×(﹣)+9=.点评:此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,单项式乘多项式法则,去括号合并,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.(2013晋江市)如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.考点:菱形的性质;全等三角形的判定与性质.专题:证明题.分析:根据菱形的性质可得AB=BC,∠A=∠C,再证明△ABF≌△CBE,根据全等三角形的性质可得BF=BE.解答:证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴BF=BE.点评:此题主要考查了菱形的性质,以及全等三角形的判定与性质,关键是掌握菱形的四条边都相等.21.(2013晋江市)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、﹣2、﹣3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率;(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.考点:列表法与树状图法.分析:(1)由一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、﹣2、﹣3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片,抽到负数的有2种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小芳两人均抽到负数的情况,再利用概率公式求解即可求得答案.解答:解:(1)∵一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、﹣2、﹣3、4,它们除了标有的数字不同之外再也没有其它区别,
本文标题:2013年福建省泉州市晋江市中考数学试卷(解析版)
链接地址:https://www.777doc.com/doc-2987301 .html