您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 数据通信与网络 > 2012年辽宁省普通高中学生学业水平考试模拟卷数学(附答案)
12012年辽宁省普通高中学生学业水平考试模拟卷数学第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个符合题目的要求)1.下列说法正确的是()(A)*N(B)Z2(C)0(D)Q22.三个数0.73a,30.7b,3log0.7c的大小顺序为()(A)bca(B)bac(C)cab(D)cba3.2sincos1212的值为()(A)12(B)22(C)32(D)14.函数4sin2(R)yxx是()(A)周期为2的奇函数(B)周期为2的偶函数(C)周期为的奇函数(D)周期为的偶函数5.已知a(1,2),b,1x,当2a+b与2a-b共线时,x值为()(A)1(B)2(C)13(D)126.某公司有员工150人,其中50岁以上的有15人,35~49岁的有45人,不到35岁的有90人.为了调查员工的身体健康状况,采用分层抽样方法从中抽取30名员工,则各年龄段人数分别为()(A)5,10,15(B)5,9,16(C)3,9,18(D)3,10,177.在下列函数中:①12()fxx,②23()fxx,③()cosfxx,④()fxx,其中偶函数的个数是()(A)0(B)1(C)2(D)38.某样本数据的频率分布直方图的部分图形如下图所示,则数据在[50,70)的频率约为()(A)0.25(B)0.05(C)0.5(D)0.0259.把函数)34cos(xy的图象向右平移(0)个单位,所得的图象关于y轴对称,则的最小值为()(A)6(B)3(C)32(D)3410.如图,大正方形的面积是13,四个全等的直角三角形围成一个小正方形.直角三角形的较短边长为2.向大正方形内投一飞镖,则飞镖落在小正方形内的概率为()(A)113(B)213(C)313(D)41311.已知x、y满足条件.3,0,05xyxyx则2x+4y的最小值为()(A)6(B)12(C)-6(D)-1212.条件语句⑵的算法过程中,当输入43x时,输出的结果是()A.32B.12C.12D.32二、填空题(本大题共4小题,每小题3分,共12分,把答案填在题中的横线上)13.设,是两个不同的平面,l是一条直线,给出四个命题:①若,l,则l;②Inputxifx>0thencosyxElsesinyxEndPrinty第7题2222俯视图左视图主视图2若//,//l,则l③若,//l,则l;④若//,l,则l.则真命题的个数为.14.在等差数列{}na中,已知28510,aaa则的值为.15.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的体积为.16.定义在R上的奇函数()fx为减函数,若0ab,给出下列不等式:①()()0fafa;②()()()()fafbfafb;③()()0fbfb;④()()()()fafbfafb.其中正确的是(把你认为正确的不等式的序号全写上).三、解答题(本大题共5小题,共52分,解答应写出文字说明或演算步骤)17.(10分)在△ABC中,角A,B,C的对边分别为a,b,c,cosA+C2=33.(Ⅰ)求cosB的值;(II)若BA·BC=2,b=22,求a和c的值.18.(10分)如图,在底面是菱形的四棱锥PABCD,60ABC,PAACa,2PBPDa,点E是PD的中点.证明:(Ⅰ)PA⊥平面ABCD;(Ⅱ)PB∥平面EAC.19.(10分)某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.(I)求课外兴趣小组中男、女同学的人数;(II)经过一个月的学习、讨论,这个兴趣小组决定随机选出两名同学分别去做某项试验,求选出的两名同学中恰有一名女同学的概率;(III)在(II)的条件下,两名同学的试验结束后,男同学做试验得到的试验数据为68、70、71、72、74,女同学做试验得到的试验数据为69、70、70、72、74,请问哪位同学的试验更稳定?并说明理由.20.(10分)已知圆M过两点A(1,-1),B(-1,1),且圆心M在20xy上.(1)求圆M的方程;(2)设P是直线3480xy上的动点,PC、PD是圆M的两条切线,C、D为切点,求四边形PCMD面积的最小值.21.(12分)在数列na中,13a,1133nnnaa.(Ⅰ)设3nnnab.证明:数列nb是等差数列;(Ⅱ)求数列na的前n项和nS.3大连市2012年高二学业水平考试模拟测试参考答案与评分标准一、选择题1.B;2.D;3.A;4.C;5.D;6.C;7.C;8.B;9.B;10.A;11.C;12.B.二、填空题13.1;14.5;15.83;16.①④.三、解答题17.解:(1)∵cosA+C2=33,∴sinB2=sin(π2-A+C2)=33,2分∴cosB=1-2sin2B2=13.................................................................................5分(2)由BA·BC=2可得a·c·cosB=2,又cosB=13,故ac=6,........................6分由b2=a2+c2-2accosB可得a2+c2=12,.....................................................8分∴(a-c)2=0,故a=c,∴a=c=6...............................................................10分18.证明:(1)底面ABCD为菱形,60ABC,ABBCCDDAACa.··························································2分PAAC,PAABa,2PBa,PAAB,同理可证PAAD,···························································4分又ABADA,PA平面ABCD.···············································5分(2)连结ACBD,相交于O,则O为BD的中点.E为PD的中点,PBOE∥.····························································6分又OE平面EAC,PB平面EAC,·················································8分PB∥平面EAC.············································································10分19.解:(I)416015nPm每个同学被抽到的概率为115.2分课外兴趣小组中男、女同学的人数分别为3,1....................4分(II)把3名男同学和1名女同学记为123,,,aaab则选取两名同学的基本事件有121312323(,),(,),(,),(,),(,),(,),aaaaabaaabab共6种,其中有一名女同学的有3种选出的两名同学中恰有一名女同学的概率为3162P....................8分(III)16870717274715x,26970707274715x2221(6871)(7471)45s,2222(6971)(7471)3.25s女同学的实验更稳定..................10分20.解:(1)法一:线段AB的中点为(0,0),其垂直平分线方程为0xy.2分解方程组0,20.xyxy所以圆M的圆心坐标为(1,1).故所求圆M的方程为:22(1)(1)4xy.·······································4分法二:设圆M的方程为:222()()xaybr,根据题意得222222(1)(1),(1)(1),20.abrabrab·····················································2分解得1,2abr.故所求圆M的方程为:22(1)(1)4xy.·······································4分(2)由题知,四边形PCMD的面积为1122PMCPMDSSSCMPCDMPD.······································6分又2CMDM,PCPD,所以2SPC,而222||||||4PCPMCMPM,即2||4SPM.·········································································7分因此要求S的最小值,只需求PM的最小值即可,即在直线3480xy上找一点P,使得PM的值最小,所以min2231418334PM,······················································9分所以四边形PCMD面积的最小值为22||423425SPM.·····················································10分21.解:(Ⅰ)1133nnnaa,∴11133nnnnaa,于是11nnbb,∴nb为首项和公差为1的等差数列.······················································4分200903254(Ⅱ)由11b,nbn得,3nnan.∴3nnan.·································6分1211323(1)33nnnSnn,23131323(1)33nnnSnn,两式相减,得11223(333)nnnSn,·····································10分解出113()3244nnnS.·······························································12分
本文标题:2012年辽宁省普通高中学生学业水平考试模拟卷数学(附答案)
链接地址:https://www.777doc.com/doc-3002138 .html