您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014浙教版八上数学期末测试(含详解)
1一.选择题(共10小题)1.下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.2.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()3.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()4.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()5.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()6.如图所示,三角形ABC的面积为1cm2.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是()7.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.188.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为()9.已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p的取值范围是()A.p>﹣1B.p<1C.p<﹣1D.p>110.已知m为整数,则解集可以为﹣1<x<1的不等式组是()A.AB=DEB.∠B=∠EC.EF=BCD.EF∥BCA.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)A.3个B.4个C.5个D.6个A.B.C.D.A.B.C.D.A.B.C.D.2A.B.C.D.二.填空题(共5小题)11.若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=_______.12.如图是用七巧板拼成的一艘帆船,其中全等的三角形共有_________对.12题13题14题13.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是_________天.14.如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为______cm2.15.若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是_________.三.解答题(共10小题)16.解不等式组,把它的解集在数轴上表示出来,并求该不等式组所有整数解的和..17.如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果点P在直线y=x﹣1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”.(1)判断点C()是否是线段AB的“临近点”,并说明理由;(2)若点Q(m,n)是线段AB的“临近点”,求m的取值范围.18.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2﹣GE2=EA2.319.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)20.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.21.在直角坐标系中,C(2,3),C′(﹣4,3),C″(2,1),D(﹣4,1),A(0,a),B(a,O)(a>0).(1)结合坐标系用坐标填空.点C与C′关于点_________对称;点C与C″关于点_________对称;点C与D关于点_________对称;(2)设点C关于点(4,2)的对称点是点P,若△PAB的面积等于5,求a值.22.我市一水果销售公司,需将一批鲜桃运往某地,有汽车、火车运输工具可供选择,两种运输工具的主要参考数据如下:4交通工具途中平均速度(单位:千米/时)途中平均费用(单位:元/千米)装卸时间(单位:小时)装卸费用(单位:元)汽车6041600火车80321200若这批水果在运输过程中(含装卸时间)的损耗为120元/时,那么你认为采用哪种运输工具比较好?(即运输所需费用与损耗之和较少)23.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了_________小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?24.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).(1)求点D的坐标.(2)求直线BC的解析式.(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.25.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.562014浙教版八上期末测试题参考答案与试题解析一.选择题(共10小题)1.(2000•辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.考点:一次函数的图象.菁优网版权所有专题:压轴题.分析:分别根据四个答案中函数的图象求出m的取值范围即可.解答:解:A、由函数图象可知,,解得,0<m<3;B、由函数图象可知,,解得,m=3;C、由函数图象可知,,解得,m<0,m>3,无解;D、由函数图象可知,解得,m<0.故选C.点评:此题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.2.(2014•南昌)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DEB.∠B=∠EC.EF=BCD.EF∥BC考点:全等三角形的判定.菁优网版权所有分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解答:解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;点评:本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.3.(2010•遵义)在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()7A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)考点:坐标确定位置.菁优网版权所有专题:压轴题.分析:根据两点之间的距离公式,d=,将四个选项代入公式中,观察哪一个等于,再作答.解答:解:设宝藏的坐标点为C(x,y),根据坐标系中两点间距离公式可知,AC=BC,则(x﹣2)2+(y﹣3)2=(x﹣4)2+(y﹣1)2,化简得x﹣y=1;又因为标志点到“宝藏”点的距离是,所以(x﹣2)2+(y﹣3)2=10;把x=1+y代入方程得,y=0或y=4,即x=1或5,所以“宝藏”C点的坐标是(1,0)或(5,4).故选C.点评:本题考查了坐标的确定及利用两点的坐标确定两点之间的距离公式,是一道中难度题.4.(2006•日照)已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个B.4个C.5个D.6个考点:三角形的面积.菁优网版权所有专题:网格型.分析:怎样选取分类的标准,才能做到点C的个数不遗不漏,按照点C所在的直线分为两种情况:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C有4个;当点C与点B在同一条直线上时,BC边上的高为1,BC=2,符合条件的点C有2个.解答:解:C点所有的情况如图所示:故选:D.点评:此类题应选取分类的标准,才能做到不遗不漏.5.(2014•玉林)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()8A.B.C.D.考点:动点问题的函数图象.菁优网版权所有分析:根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.解答:解:①t≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时两个三角形重叠面积为小三角形的面积为0,故选:B.点评:本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.6.(2014•丰南区二模)如图所示,三角形ABC的面积为1cm2.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是()A.B.C.D.考点:面积及等积变换.菁优网版权所有专题:数形结合.分析:过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.解答:解:过P点作PE⊥BP,垂足为P,交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面积=三角形ABC的面积=cm2,选项中只有B的长方形面积为cm2,故选B.9点
本文标题:2014浙教版八上数学期末测试(含详解)
链接地址:https://www.777doc.com/doc-3013042 .html