您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2012-2013学年安徽省淮南市八年级(上)期末数学模拟试卷
2012-2013学年安徽省淮南市八年级(上)期末数学模拟试卷一、填空题(每小题3分,共36分)1.(3分)长方形的对称轴有_________条.2.(3分)如果函数,那么当x=1时的函数值为_________.3.(3分)(a+b)(a﹣2b)=_________;(a+4b)(m+n)=_________.4.(3分)已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4cm,则△DEF的边中必有一条边等于_________.5.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为14cm,则△ABC的周长为_________.6.(3分)把直线向上平移个单位,可得到函数_________.7.(3分)()2002×(1.5)2003÷(﹣1)2004=_________.8.(3分)如图,AC,BD相交于点O,AC=BD,AB=CD,写出图中两对相等的角_________,_________.9.(3分)在﹣,0.131131113中,有理数是_________;无理数是_________.10.(3分)小明将RMB1000元存入银行,年利率为2%,利息税为20%,那么x年后的本息和y元与年数x的函数关系式是_________(不计算复利).11.(3分)(2004•郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为_________.12.(3分)在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是_________度.二、选择题(每小题3分,共24分)13.(3分)(2007•日照)下列图形中对称轴最多的是()A.圆B.正方形C.等腰三角形D.线段14.(3分)下列函数关系式:①y=﹣x;②y=2x+11;③y=x2+x+1;④.其中一次函数的个数是()A.1个B.2个C.3个D.4个15.(3分)(2002•青海)下列各式中,相等关系一定成立的是()A.(x﹣y)2=(y﹣x)2B.(x+6)(x﹣6)=x2﹣6C.(x+y)2=x2+y2D.6(x﹣2)+x(2﹣x)=(x﹣2)(x﹣6)16.(3分)直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等17.(3分)有下列说法:(1)带根号的数是无理数;(2)无限不循环小数是无理数;(3)不带根号的数不是无理数;(4)无理数包括正无理数、零、负无理数.其中正确的说法的个数是()A.1个B.2个C.3个D.4个18.(3分)已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.19.(3分)a3m+1可写成()A.(a3)m+1B.(am)3+1C.a•a3mD.(am)2m+120.(3分)如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为()A.80°B.100°C.60°D.45°三、解答题21.(6分)计算:.22.(6分)分解因式:(3a﹣2b)2﹣(2a+3b)2.23.(8分)已知a,b是有理数,试说明a2+b2﹣2a﹣4b+8的值是正数.24.(8分)如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?25.(8分)地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.26.(8分)如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.27.(8分)已知,直线y=2x+3与直线y=﹣2x﹣1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.28.(8分)如图所示,某船上午11时30分在A处观测海岛B在北偏东60°方向,该船以每小时10海里的速度航行到C处,再观测海岛B在北偏东30°方向,又以同样的速度继续航行到D处,再观测海岛在北偏西30°方向,当轮船到达C处时恰好与海岛B相距20海里,请你确定轮船到达C处和D处的时间.2012-2013学年安徽省淮南市八年级(上)期末数学模拟试卷参考答案与试题解析一、填空题(每小题3分,共36分)1.(3分)长方形的对称轴有2条.考点:矩形的性质;轴对称图形.2149076专题:证明题.分析:根据矩形的性质可知,长方形的对称轴为经过两边中点的两条线段.解答:解:只有连接长方形对边中点的两条线段所在的直线是长方形的对称轴,即长方形的对称轴有2条.故答案为2.点评:注意连接长方形对角线的两条线不是长方形的对称轴.2.(3分)如果函数,那么当x=1时的函数值为3.考点:函数值.2149076专题:计算题.分析:把自变量x=1代入函数解析式计算即可求解.解答:解:当x=1时,y=﹣=4﹣1=3.故答案为:3.点评:本题考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.3.(3分)(a+b)(a﹣2b)=a2﹣ab﹣2b2;(a+4b)(m+n)=am+an+4bm+4bn.考点:多项式乘多项式.2149076专题:计算题.分析:按照多项式乘以多项式的法则进行计算即可.解答:解:(a+b)(a﹣2b)=a2﹣ab﹣2b2;(a+4b)(m+n)=am+an+4bm+4bn.故答案是a2﹣ab﹣2b2;am+an+4bm+4bn.点评:本题考查了多项式乘多项式.解题的关键是灵活掌握多项式乘多项式的法则.4.(3分)已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4cm,则△DEF的边中必有一条边等于4cm或9.5cm.考点:全等三角形的性质.2149076分析:由已知条件,先运用等腰三角形的性质求出AB的长,再运用三角形全等即可求解.解答:解:△ABC的周长为23cm,BC=4cm,AB=AC,则AB=AC==9.5cm,又因为全等三角形的对应边相等,因而△DEF的边中必有一条边等于4cm或9.5cm.故填4cm或9.5cm.点评:本题主要考查了全等三角形的性质;全等三角形的对应边相等,是需要识记的内容,本题很容易漏掉一个解,做题时,加强注意.5.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为14cm,则△ABC的周长为24cm.考点:线段垂直平分线的性质.2149076专题:计算题.分析:根据线段的垂直平分线的性质得到DA=DC,AE=EC=5cm,由AB+BD+AD=14cm,得到AB+BD+DC=14cm,所以有AB+BC+AC=14cm+10cm=24cm,从而得到结论.解答:解:∵DE是AC的垂直平分线,∴DA=DC,AE=EC=5cm,而△ABD的周长为14cm,即AB+BD+AD=14cm,∴AB+BD+DC=14cm,∴AB+BC+AC=14cm+10cm=24cm,即△ABC的周长为24cm.故答案为24cm.点评:本题考查了线段的垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.也考查了三角形周长的定义.6.(3分)把直线向上平移个单位,可得到函数y=x﹣.考点:一次函数图象与几何变换.2149076专题:探究型.分析:根据“上加下减”的原则进行解答即可.解答:解:直线y=x﹣1向上平移个单位可得到y=x﹣1+,即y=x﹣.故答案为:y=x﹣.点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.7.(3分)()2002×(1.5)2003÷(﹣1)2004=1.5.考点:有理数的乘方.2149076专题:计算题.分析:根据实数的运算法则进行计算即可,(﹣1)2004=1.解答:解:原式=()2002×()2003÷1=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记实数的运算法则.8.(3分)如图,AC,BD相交于点O,AC=BD,AB=CD,写出图中两对相等的角∠A=∠D,∠ABO=∠DCO.考点:全等三角形的判定与性质.2149076专题:开放型.分析:由已知条件,利用SSS判定△ABC≌△DCB,从而得出∠A=∠D,进而得到∠ABO=∠DCO.解答:解:连接BC,∵AC=BD,AB=CD,BC=BC∴△ABC≌△DCB(SSS)∴∠A=∠D,∠ABC=∠DCB,∠DBC=∠ACB∴∠ABC﹣∠DBC=∠DCB﹣∠ACB即∠ABO=∠DCO.故填∠A=∠D,∠ABO=∠DCO.点评:本题考查了全等三角形的判定与性质;常用的方法有AAS,SSS,SAS,HL等,作出辅助线是正确解答本题的关键.9.(3分)在﹣,0.131131113中,有理数是﹣,0,1.23,,0.131131113;无理数是π,.考点:实数.2149076专题:存在型.分析:先把化为2的形式,再根据有理数及无理数的定义进行解答即可.解答:解:∵=2,2是有理数,∴这一组数中的有理数是:﹣,0,1.23,,0.131131113;无理数是:π,.点评:本题考查的是实数的分类,熟知有理数及无理数的概念是解答此题的关键,需要注意的是π是无理数这一关键点.10.(3分)小明将RMB1000元存入银行,年利率为2%,利息税为20%,那么x年后的本息和y元与年数x的函数关系式是y=16x+1000,(x>0且为整数)(不计算复利).考点:根据实际问题列一次函数关系式.2149076专题:经济问题.分析:根据:本息和=本金+利息,列出函数关系式.解答:解:依题意得:y=1000+1000×2%×(1﹣20%)x即:y=16x+1000.点评:本题考查了利用“本息和”列函数关系式,注意利息税的正确使用.11.(3分)(2004•郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为±4.考点:平方差公式.2149076分析:将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值.解答:解:∵(2a+2b+1)(2a+2b﹣1)=63,∴(2a+2b)2﹣12=63,∴(2a+2b)2=64,2a+2b=±8,两边同时除以2得,a+b=±4.点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体.12.(3分)在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是35度.考点:全等三角形的判定与性质.2149076分析:过点E作EF⊥AD,证明△ABE≌△AFE,再求得∠CDE=90°﹣35°=55°,即可求得∠EAB的度数.解答:解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°﹣35°=55°,即∠CDA=110°,∠DAB=70°,∴∠EAB=35°.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.二、选择题(每小题3分,共24分)13.(3分)(2007•日照)下列图形中对称轴最多的是()A.圆B
本文标题:2012-2013学年安徽省淮南市八年级(上)期末数学模拟试卷
链接地址:https://www.777doc.com/doc-3024426 .html