您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 八年级数学上册知识点梳理
第一章三角形初步[定义与命题]定义:规定某一名称或术语的意义的句子。命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。正确的命题叫真命题,不正确的命题叫假命题。基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。定理:用逻辑的方法判断为正确并作为推理的根据的真命题。注意:基本事实和定理一定是真命题。[证明]在一个特定的公理系统中,根据一定的规则或标准,由公理和定理推导出某些命题的过程。[三角形]由三条不在同一直线上的线段首尾顺次相接组成的图形叫做三角形[三角形按边分类]三角形()不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形[三角形按内角分类]三角形锐角三角形:三个内角都是锐角直角三角形:有一个内角是直角钝角三角形:有一个内角是钝角[三角形的性质]三角形任意两边之和大于第三边,任意两边之差小于第三边。三角形三内角和等于180°。三角形的一个外角等于与它不相邻的的两个内角之和。[三角形的三种线]顶角的角平分线:三条,交于一点三角形的中线:三条,交于一点三角形的高线:三条,交于一点。思考:锐角、直角、钝角三角形高线的交点分别在什么位置[全等形]能够完全重合的两个图形叫做全等形.[全等三角形]能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.[全等三角形的性质]全等三角形的对应边相等,全等三角形的对应角相等。还有其它推出来的性质:全等三角形的周长相等、面积相等。全等三角形的对应边上的对应中线、角平分线、高线分别相等。[三角形全等的证明]边边边:三边对应相等的两个三角形全等.(SSS)边角边:两边和它们的夹角对应相等的两个三角形全等.(SAS)角边角:两角和它们的夹边对应相等的两个三角形全等.(ASA)角角边:两个角和其中一个角的对边对应相等的两个三角形全等.(AAS)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等.(HL)证明两个三角形全等的基本思路:方法指引证明两个三角形全等的基本思路:(1):已知两边----找第三边(SSS)找夹角(SAS)(2):已知一边一角---已知一边和它的邻角找是否有直角(HL)已知一边和它的对角找这边的另一个邻角(ASA)找这个角的另一个边(SAS)找这边的对角(AAS)找一角(AAS)已知角是直角,找一边(HL)(3):已知两角---找两角的夹边(ASA)找夹边外的任意边(AAS)练习[角平分线的作法]尺规作图[角平分线的性质]在角平分线上的点到角的两边的距离相等.∵OP平分∠AOB,PM⊥OA于M,PN⊥OB于N,∴PM=PN[角平分线的判定]角的内部到角的两边的距离相等的点在角的平分线上。∵PM⊥OA于M,PN⊥OB于N,PM=PN∴OP平分∠AOB[三角形的角平分线的性质]三角形三个内角的平分线交于一点,并且这一点到三边的距离相等.【最后】学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义。(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上。(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等。切记切记(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”。ABCPMNO第二章特殊三角形[轴对称图形]如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.折叠后重合的点是对应点,叫做对称点。[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.[图形轴对称的性质]①关于某直线对称的两个图形是全等形。②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。[轴对称与轴对称图形的区别][线段的垂直平分线](1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.[等腰三角形]有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.[等腰三角形的性质]性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一).特别的:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上的中线、角平分线、高线对应相等.[等腰三角形的判定定理]如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).特别的:(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形.(2)有两边上的角平分线对应相等的三角形是等腰三角形.(3)有两边上的中线对应相等的三角形是等腰三角形.(4)有两边上的高线对应相等的三角形是等腰三角形.[等边三角形]三条边都相等的三角形叫做等边三角形,也叫做正三角形.[等边三角形的性质]等边三角形的三个内角都相等,并且每一个内角都等于60°[等边三角形的判定方法](1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.[逆命题和逆定理]命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。正确的命题叫真命题,不正确的命题叫假命题。基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。定理:用逻辑的方法判断为正确并作为推理的根据的真命题。注意:基本事实和定理一定是真命题。互逆定理:一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫互逆命题。如果把其中一个叫做原命题,那么另一个就叫做它的逆命题。互逆定理:如果一个定理的逆命题也是真命题,那么这两个定理叫做互逆定理。其中一个定理叫做另一个定理的互逆定理。注意:1.逆命题、互逆命题不一定是真命题,但逆定理、互逆定理一定是真命题。2.所有的命题都有逆命题,但不是所有的定理都有逆定理。[勾股定理]一、知识结构二.知识点回顾1、勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2、如何判定一个三角形是直角三角形(1)先确定最大边(如c)(2)验证2c与22ba是否具有相等关系(3)若2c=22ba,则△ABC是以∠C为直角的直角三角形;若2c≠22ba则△ABC不是直角三角形。3、勾股数满足22ba=2c的三个正整数,称为勾股数,如(1)3,4,5;(2)5,12,13;(3)6,8,10;(4)8,15,17;(5)7,24,25(6)9,40,41定理:222cba应用:主要用于计算直角三角形的性质:勾股定理直角三角形的判别方法::若三角形的三边满足222cba则它是一个直角三角形.勾股定理第三章不等式知识点一:不等式的概念1.不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2)等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。(3)要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。如:不等式x-4<1的解集是x<5.不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。知识点二:不等式的基本性质基本性质1:如果ab,bc,那么ac。不等式的传递性。基本性质2:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。基本性质3:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。基本性质4:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。要点诠释:(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。知识点三:一元一次不等式的概念只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。要点诠释:(1)一元一次不等式的概念可以从以下几方面理解:①左右两边都是整式(单项式或多项多);②只含有一个未知数;③未知数的最高次数为1。(2)一元一次不等式和一元一次方程可以对比理解。相同点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“>”、“<”、“≥”、“≤”连接),一元一次方程表示相等关系(用“=”连接)。知识点四:一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式。2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用。(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。3.不等式的解集在数轴上表示:在数轴上可以直观地把不
本文标题:八年级数学上册知识点梳理
链接地址:https://www.777doc.com/doc-3038345 .html