您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > (数理化解题研究)浅谈等效电源及其等效思想
1浅谈等效电源及其等效思想----如何将等效电源及其等效思想引入到高中物理竞赛中常仁飞(南京市六合高级中学南京211500)【摘要:如何避开线性二端网络理论中的复杂概念和戴维南定理把等效电源问题及其等效思想渗透到高中物理及竞赛中。】【关键词:等效、等效思想、等效电源】引言等效思想是物理学中一种非常重要的思想方法,在高中物理中也有着极其重要的应用。下面我结合自己的教学实践谈一谈等效电源及其等效思想在电路问题中的应用。考虑到高中生的知识基础及认识能力,这里我们避开线性二端网络理论中的一些生疏概念,也不能提及戴维南定理。但这并不妨碍我们在教学中对学生进行等效思想的渗透。等效过程分析高中生已具有电路的串、并联和电源的外特性曲线等知识基础。因此,容易理解:一个电动势为E的理想电源和一个阻值为r的电阻串联后可以看成一个电动势为E、内阻为r的一般电源。即:进一步:一个电动势为E内阻为r的一般电源和一个阻值为R的电阻串联可以看作一个电动势为E内阻为r+R的一般电源。即:综上所述可以得到这样一个结论:结论一:如果需要把一个电源和一个或几个电阻串联后看成一个电源,此电源的电动势不变(即为被等效部分的开路电压),内阻为原电源内阻加上所串联的电阻之和(即为原电源仅保留内阻后和其他电阻的串联值)。此结论也可从电源的外特性曲线得出。如果是一个电动势为E内阻为r的一般电源和一个阻值为R的电阻并联呢?ErEr等效等效图(1)ErER+r等效等效图(2)REr等效等效图(3)RxRAB?2若把图(3)中虚线框内的部分看成一个电源,由电源电动势的测量方法显然此电源的电动势为AB间的开路电压。显然当AB间开路时(即xR)AB间的开路电压即为电阻R两端的电压。由全电路的欧姆定律易知ERRRUUERABe①当AB间短接时(即0xR)我们可求出短路电流rEI短②①②联立可以得到图(3)中虚线框内的部分等效电阻为rRRrrEErRRIEree短即为r并R的结果。即:综上所述我们又可以得到一个结论:结论二:如果需要把一个电源和一个或几个电阻并联后看成一个电源,此电源的电动势为被等效部分的开路电压,此电源的内阻为把原电源仅保留电阻后和其他电阻的并联值。说明:结论一和结论二是基于高中生能理解的通俗表述,并非定理或严格证明。可以综合运用到很多地方简化电路。进一步地我们可以得到下面一个等效思想:结论图(5)中左边虚线框内仅代表一个含有电源的复杂电路。此等效思想可表述为:当电源(可以是多个)和多个电阻构成混联电路时,可以把其等效为一个电源,此等效电源的电动势等于被等效部分的开路电压;等效内阻为仅保留电源的内阻后混联电路的电阻。等效等效图(4)ErRxRABErRRErRRrrxRAB等效等效xRAB图(5)eEEerrxRAB3这其实就是戴维南定理的实质内容,这样用电路的串、并联知识和电源的外特性曲线的简单推导和通俗表达可以避开线性二端网络理论中的复杂概念,把这种等效的思想渗透到高中物理教学中去。这对学生的竞赛能力的培养以及今后的发展都很有帮助。应用下面看看这种等效思想的应用:例1.如图(6)所示,电源的电动势、内阻未知,1R、2R的阻值也未知。当a、b间接入不同的电阻时,电流表有不同的示数,如表中所示,请完成此表格。电流表的示数1A0.6A0.4A接入a、b间的电阻10Ω18Ω118Ω解析:本题中由于电源的电动势E、内阻r、电阻1R、2R都是未知量,若按常规的解法从表格中的两组已知数据中无法解出四个未知量。这时就可采用等效思想:把右图中虚线框内的部分等效为一个电源。设此等效电源的电动势为eE、内阻为er。由全电路的欧姆定律可列出方程组:101eErEA186.0eerEA所以,当电流为0.4A时,有2124.0RVRrEAee解得28R当电阻是118Ω时,有AARrEIee1.0211812问题迎刃而解.简评:本题重点体现等效思想的运用。例2.如图(7)所示,滑动变阻器的电阻可在0--10Ω间变化。求当滑动变阻器接入电路的阻值为多大时电阻R上消耗的功率最大?最大功率为多少?解析:本题若要从电路的串、并联规律推导R上实际功率随滑动变阻器阻值的变化关系,得到函数关系式后用数学方法求最值将非常麻烦,对高中生而言短时间内不可能完成。我们可以运用等效电源的思想结合电源的输出功率与外电路电阻的变化关系曲线(如图(8))予以解决。由图(8)可以看出当外电路的电阻和电源内阻相等时电源的输出功率最大,即外电路获得功率最大。所以本题只要将图E,r1R2RRAab图(6)E,r1R2RRAab联立解得VEe12,2er12VR=8Ω2Ω2Ω4Ω图(7)ab4(7)电路中虚线框内的部分等效为一个电源,求出等效电源的电动势eE、和内阻er,再结合图(8)要的R上消耗的最大功率只需er=R=8Ω即可求出滑动变阻器的接入电阻。下面求eE和er:eE等于a、b两点间的开路电压即:eE=VV644221284//)22(RRrxe解得6xRWWrEPee125.1846422max简评:本题运用了等效电动势和等效内阻的具体计算方法。例3(竞赛训练题).如图(9)试求不平衡电桥电流计的电流GI与四臂电阻的关系。设电源内阻为零。解析:本题若要用电路的串、并联关系列方程来解将相当麻烦,下面利用等效电源的思想来解。由于本题要求电流计中电流和四臂的关系,所以要突出电流计为外电路。电路图可改画为图(10)(a),而图(10)(a)又可以等效为图(10)(b)。显然,只要求得eE和er,GI将非常容易得出。先求eE:设想把图(10)(a)中的虚线框开路,其开路电压CDBCUUU开路时,1R与3R电流相等,2R与4R电流相等,所以:ERRRUBC313,ERRRUCD424所以:ERRRRRRRRERRRRRRUEe42314132424313ORPrrE42P图(8)ABCDEG1RA3RA4RA2RAGIA图(9)ABCDE1RA3RA4RA2RAGGIA(a)图(10)(b)eEGGIAGRerGR5再求er:er即为图(10)(a)中仅保留电源内阻后虚线框内的混联电阻,由于原电源内阻为零,即可看成导线,所以:423131424231424231314231////RRRRRRRRRRRRRRRRRRRRRRRRre进而求得:4231314242314132RRRRRRRRRRRRRERRRRIGG)(简评:本题体现等效思想和等效电动势和等效内阻的具体计算方法的综合运用。以上三个例子分层次说明了等效思想的具体运用,实际运用中用到等效电源和等效思想的例子还很多。本文的探讨仅为把这种思想渗透到高中物理教学中提供一种通俗易懂的方法。【参考文献:梁灿彬、秦光戎、梁竹健《电磁学》高等教育出版社】
本文标题:(数理化解题研究)浅谈等效电源及其等效思想
链接地址:https://www.777doc.com/doc-3044602 .html