您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > (文献翻译)凹函数的等价定义及其应用_李莎,左兵,汪义瑞
ThenumberoftheconcavefunctionanditsapplicationLiShaleftWangYirui(Departmentofmathematics,AnkangUniversity,Ankang,Shaanxi725000)Abstract:intheuniversitymathematicslearningandconcavefunctionisakindofspecial.Inmathematicalanalysis,theproofofsomeinequalitiesinprobabilitycourse,withaconcavefunctionofthepriceacaninaveryconcise,cleverlyhavetoprovealoud0withaconcavefunctionthatinequalityofthekeyistoconstructafunctiontobeabletosolvetheproblem.Keywords:concavefunctionequivalentconditioninequalityproof1.concavefunctionDefinition:SetftodefinetheintervalIfunction,iftheITwopointson12,xxArbitrarynumber,(0,1),thereareatleast1212((1))()(1)()fxxfxfxbefbecalledIConcavefunction..Note:iftheinequalityischangedtostrictinequality,thenthecorrespondingfunctioniscalledthestrictlyconcavefunction.2.ThenumberofconcavefunctionofthenumberofpiecesEquivalentconditionsofthefirstkind2.1Set(),yfxxI,about1,2xxIisthere12122()()()2fxfxxxf2.2Set(),yfxxI,aboutIThreepointsonthemeaningofthelastterm123xxx,thereareatleast21322132()()()()fxfxfxfxxxxx2.3Set(),yfxxI,aboutIThreepointsonthemeaningofthelastterm123xxx,thereareatleast213232213232()()()()()()fxfxfxfxfxfxxxxxxx,Thatis123kkk2.4Set(),yfxxI,about12,,,,nxxxI,have1212()()(()nnxxxfxfxfxfnn)2.5Set(),yfxxI,about121,,,,(1,2,,)(0,1),1iinnixxxIin,Isthere11()())iiiinniifxfxSecondkindsofequivalentconditions(firstderivative)2.6SetfasintervalI0nthefunctionoftheI0nthefunctionofthe12,xx,there21121()()()()fxfxfxxx.2.7SetfasintervalIonthefunctionofthefbyIontheminusfunction.Thirdkindsofequivalentconditions(twoorderderivative)2.8SetfasintervalIonthetwo-orderderivativefunction,theIThereare0,fxxI3.Theimportantapplicationofconcavefunctionininequalityproving3.1thebasisoftheconcavefunctionisusedtodefinethemeaningof1cases.Set01,,0axy,Provethat.1(1)aaxyaxay.Syndrome:when0xor0yWhentheconclusionisself-evident.②Whenthe,0xyWhentheoriginaltypeln(1)lnln[(1)]axayaxay1AlsolnxAsaconcavefunction,dueto21ln()0xx,utilize()0fxasaconcavefunction,thestructureisestablished.3.2theuseoftheconcavefunctionoftheotherpiecesofevidence2.2Case2.()(01)pppababpProof:theinequalityisrewrittenas:()(01)22pppababpAndinvestigatethefunction,()(0,01)pfxxxp,Weknowthatisaconcavefunction(()0)fx,sotoany12,0xxall1212()()()22xxfxfxfthen1212()22pppxxxx,Therefore,theoriginalinequality.Case3.3334sin(0)2xxxxProof:for3334()sinxxfxx,andremember[0,],[,]442IJbe4(0)=()0,()0,(0)0,()0,()0()244ffffffxxIThusknow()0()fxxJ,Thatis,()fxstayIconcavefunction,,()0()fxxI()xI,fortheintervalJthatissimilar.()0()fxxJ,则3334sin(0)2xxxxCase4.2111(1)()kknnnnknxxn12(1,1;(0,1))knaxxxx1,2,,knProof:because1()()kknfxxxstay(0,)concavefunction(()0)fx,So,wehave1211111111()[()]()kkkknnnnnnkkknxxxnnnnxSotheconclusionwasestablished.3.3usesthepropertyofconcavefunctiontoproveintegralinequality.Corollary:setfunctionin[,]abUppercontinuous,in(,)abTwo-ordercanbeguided,ifthereis()0,()fxgxIsinterval[,]cdIntegrablefunctionson,()agxb,sothere11[()](())ddccfgxdxfgxdxdcdc.Case5.()0gx,Proof101()()ngxdxgnProof:by()0gxknowable()gxIsaconcavefunction,,andnxIsapositivefunctionandsatisfies,01nx,sotheinferencecanbeknowntotheinterval[0,1]integrablefunctionson()gx,if0()0gx,then110100()()1()1()gxdxgxdxgxgxdx,knowable1100()()nngxdxgxdx,Chemicalreduction11001()()()nngxdxgxdxgn,topermit.Reference:[1]MathematicalanalysisofMathematicsDepartmentofEastChinaNormalUniversity(thefirstvolume,ThirdEdition)[M]HigherEducationPress,2001.[2]ZhouMinqiang.Mathematicalanalysisexercises(firstvolume)[M].SciencePress.2010.[3]PeiWenli.Typicalproblemsandmethodsinmathematicalanalysis[M].HigherEducationPress.1988.[4]ZhangZhusheng.Newmathematicalanalysis[M].PekingUniversitypress,2001.[5]XuLizhi.Selectionofmethodsandexamplesofmathematicalanalysis[M].HigherEducationPress.1984.[6]QiuPetai.Mathematicalanalysisoflearningguidance[M].SciencePress,2004.
本文标题:(文献翻译)凹函数的等价定义及其应用_李莎,左兵,汪义瑞
链接地址:https://www.777doc.com/doc-3044631 .html