您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2011中考数学真题解析31一元二次方程根的判别式(含答案)
温馨杂草屋第1页(2012年1月最新最细)2011全国中考真题解析120考点汇编一元二次方程根的判别式一、选择题1.(2011江苏苏州,8,3分)下列四个结论中,正确的是A.方程12xx有两个不相等的实数根B.方程11xx有两个不相等的实数根C.方程12xx有两个不相等的实数根D.方程1xax(其中a为常数,且2a)有两个不相等的实数根考点:根的判别式.专题:计算题.分析:把所给方程整理为一元二次方程的一般形式,判断解的个数即可.解答:解:A、整理得:x2+2x+1=0,△=0,∴原方程有2个相等的实数根,故错误,不合题意;B、整理得:x2-x+1=0,△<0,∴原方程没有实数根,故错误,不合题意;C、整理得:x2-2x+1=0,△=0,∴原方程有2个相等的实数根,故错误,不合题意;D、整理得:x2-ax+1=0,△>0,∴原方程有2个b不相等的实数根,故正确,符合题意.故选D.点评:考查方程的实数根的问题;用到的知识点为:一元二次方程根的判别式大于0,方程有2个不相等的实数根;根的判别式等于0,方程有2个相等的实数根;根的判别式小于0,方程没有实数根.2.(2011重庆江津区,9,4分)已知关于x的一元二次方程(a﹣l)x2﹣2x+l=0有两个不相等的实数根,则a的取值范围是()A、a<2B、a>2C、a<2且a≠lD、a<﹣2考点:根的判别式。专题:计算题。温馨杂草屋第2页分析:利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.解答:解:△=4﹣4(a﹣1)=8﹣4a>0得:a<2.又a﹣1≠0∴a<2且a≠1.故选C.点评:本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.3.(2011湖北荆州,9,3分)关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,则a的值是()A、1B、-1C、1或-1D、2考点:根与系数的关系;根的判别式.专题:计算题.分析:根据根与系数的关系得出x1+x2=-ba,x1x2=ca,整理原式即可得出关于a的方程求出即可.解答:解:依题意△>0,即(3a+1)2-8a(a+1)>0,即a2-2a+1>0,(a-1)2>0,a≠1,∵关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,∴x1-x1x2+x2=1-a,∴x1+x2-x1x2=1-a,∴3a+1a-2a+2a=1-a,解得:a=±1,又a≠1,∴a=-1.故选:B.点评:此题主要考查了根与系数的关系,由x1-x1x2+x2=1-a,得出x1+x2-x1x2=1-a是解决问题的关键.温馨杂草屋第3页4.(2011•青海)关于x的一元二次方程x2+4x+k=0有实数解,则k的取值范围是()A、k≥4B、k≤4C、k>4D、k=4考点:根的判别式;解一元一次不等式。专题:计算题。分析:根据方程解的情况和根的判别式得到b2﹣4ac≥0,求出即可.解答:解:∵关于x的一元二次方程x2+4x+k=0有实数解,∴b2﹣4ac=42﹣4×1×k≥0,解得:k≤4,故选B.点评:本题主要考查对根的判别式,解一元一次不等式等知识点的理解和掌握,能熟练地运用根的判别式进行计算是解此题的关键.5.(2011年山东省威海市,9,3分)关于x的一元二次方程x2+(m–2)x+m+1=0有两个相等的实数根,则m的值是()A、0B、8C、4±22D、0或8考点:根的判别式.专题:计算题.分析:根据一元二次方程根的判别式的意义,由程x2+(m–2)x+m+1=0有两个相等的实数根,则有△=0,得到关于m的方程,解方程即可.解答:解:∵一元二次方程x2+(m–2)x+m+1=0有两个相等的实数根,∴△=0,即(m–2)2–4×1×(m+1)=0,解方程得m1=0,m2=8.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2–4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.(2011山东省潍坊,7,3分)关千x的方程2210xkxk的根的情况描述正确的是().A.k为任何实数.方程都没有实数根温馨杂草屋第4页B,k为任何实数.方程都有两个不相等的实数根C.k为任何实数.方程都有两个相等的实数根D.根据k的取值不同.方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【考点】根的判别式.【分析】本题需先求出方程的根的判别式的值,然后得出判别式大于0,从而得出答案.【解答】解:∵关于x的方程x2+2kx+k-1=0中△=(2k)2-4×(k-1)=4k2-4k+4=(2k-1)2+3>0∴k为任何实数,方程都有两个不相等的实数根故选B.【点评】本题主要考查了根的判别式的概念,在解题时要能对根的判别式进行整理变形是本题的关键.7.(2011成都,6,3分)已知关于x的一元二次方程mx2+nx+k=0(m≠0)有两个实数根,则下列关于判别式n2-4mk的判断正确的是()A.n2-4mk<0B.n2-4mk=0C.n2-4mk>0D.n2-4mk≥0考点:根的判别式。专题:计算题。分析:根据一元二次方程ax2+bx+c=0,(a≠0)根的判别式△=b2-4ac直接得到答案.解答:解:∵关于x的一元二次方程mx2+nx+k=0(m≠0)有两个实数根,∴△=n2-4mk≥0,故选D.点评:本题考查了一元二次方程ax2+bx+c=0,(a≠0)根的判别式△=b2-4ac:当△>0,原方程有两个不相等的实数根;当△=0,原方程有两个相等的实数根;当△<0,原方程没有实数根.8.(2011•包头,3,3分)一元二次方程x2+x+41=0的根的情况是()温馨杂草屋第5页A、有两个不等的实数根B、有两个相等的实数根C、无实数根D、无法确定考点:根的判别式。专题:计算题。分析:先计算△=b2﹣4ac,然后根据△的意义进行判断根的情况.解答:解:∵△=b2﹣4ac=12﹣4•1•错误!未找到引用源。=0,∴原方程有两个相等的实数根.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的根判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(2011福建福州,7,4分)一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根考点:根的判别式;解一元二次方程-因式分解法.分析:先把原方程变形为:x2﹣2x=0,然后计算△,得到△=4>0,根据△的含义即可判断方程根的情况.解答:解:原方程变形为:x2﹣2x=0,∵△=(﹣2)2﹣4×1×0=4>0,∴原方程有两个不相等的实数根.故选A.点评:本题考查了一元二次方程ax2+bx+c=0,(a≠0)根的判别式△=b2﹣4ac:当△>0,原方程有两个不相等的实数根;当△=0,原方程有两个相等的实数根;当△<0,原方程没有实数根.二、填空题1.(2011•江苏徐州,15,3)若方程x2+kx+9=0有两个相等的实数根,则k=.考点:根的判别式。专题:计算题。温馨杂草屋第6页分析:根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.解答:解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的根判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2.如果关于x的方程x2-2x+m=0(m为常数)有两个相等实数根,那么m=1.考点:根的判别式.专题:计算题.分析:本题需先根据已知条件列出关于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m为常数)有两个相等实数根∴(-2)2-4×1•m=04-4m=0m=1故答案为:1点评:本题主要考查了根的判别式,在解题时要注意对根的判别式进行灵活应用是本题的关键.3.(2011新疆建设兵团,12,5分)若关于x的一元二次方程x2+2x+a=0有实数根,则a的取值范围是a≤1.考点:根的判别式.分析:在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2﹣4ac≥0.解答:解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=4﹣4a≥0,解之得a≤1.温馨杂草屋第7页故答案为a≤1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.如果方程x2+2x+a=0有两个相等的实数根,则实数a的值为1.【考点】根的判别式.【专题】计算题;方程思想.【分析】由于方程x2+2x+a=0有两个相等的实数根,由此得到方程的判别式为0,由此可以得到关于a的方程,解方程即可求解.【解答】解:∵方程x2+2x+a=0有两个相等的实数根,∴△=22-4a=0,∴a=1.故答案为:1.【点评】此题主要考查了一元二次方程的判别式,利用方程的判别式与一元二次方程的根的关系得到关于a的方程是解题的关键.三、解答题1.(2011•郴州)当t取什么值时,关于x的一元二次方程2x2+tx+2=0有两个相等的实数根?考点:根的判别式。专题:方程思想。分析:根据一元二次方程的根的判别式△=b2﹣4ac=0列出关于t的一元二次方程,然后解方程即可.解答:解:∵一元二次方程2x2+tx+2=0的二次项系数a=2,一次项系数b=t,常数项c=2,∴△=t2﹣4×2×2=t2﹣16=0,解得,t=±4,∴当t=4或t=﹣4时,原方程有两个相等的实数根.点评:本题考查了一元二次方程的根与系数的关系.当△=b2﹣4ac>0时,方程有两个不相温馨杂草屋第8页等的实数根;当△=b2﹣4ac=0时,方程有两个相等的实数根;△=b2﹣4ac<0时,方程无实数根.2.(2011•南充,18,8分)关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.考点:根与系数的关系;根的判别式;解一元一次不等式组。专题:代数综合题。分析:(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数k的取值范围;(2)先由一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1.再代入不等式x1+x2﹣x1x2<﹣1,即可求得k的取值范围,然后根据k为整数,求出k的值.解答:解:(1)∵方程有实数根,∴△=22﹣4(k+1)≥0,解得k≤0.故K的取值范围是k≤0.(2)根据一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1x1+x2﹣x1x2=﹣2﹣(k+1).由已知,得﹣2﹣(k+1)<﹣1,解得k>﹣2.又由(1)k≤0,∴﹣2<k≤0.∵k为整数,∴k的值为﹣1和0.点评:本题综合考查了根的判别式和根与系数的关系.在运用一元二次方程根与系数的关系解题时,一定要注意其前提是此方程的判别式△≥0.
本文标题:2011中考数学真题解析31一元二次方程根的判别式(含答案)
链接地址:https://www.777doc.com/doc-3045253 .html