您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 汽车理论 > 轻型汽车抗式主消音器设计
I摘要随着我国人民生活水平的提高,汽车在我国拥有量越来越大,交通噪声愈发严重,排气噪声是汽车噪声的主要声源之一,所以消声器的研究和设计越来越受人们重视。研究现代计算机模拟仿真在消声器设计上的应用,将更能提高消声器设计水平。通过仿真设计与实验相结合,二者相互补充,从内部结构进行设计,减少设计时间,降低消声器设计成本。消声器的消声量大小是设计消声器的最主要指标,本设计参照国家标准《声学消声器测量方法GB/T4760—1995》进行了轻型汽车抗式主消音器的设计与数据处理,通过管道声学实验法,对消声器进行了消声性能实验,采用四传声器法测量原理对制作的两管无孔消声器模型和三管有孔消声器模型分别做了测试,并得到其传递损失曲线和自谱曲线。通过实验和数据处理,完成了消声器的设计,测试结果表明,内部结构相对简单的两管无孔消声器的传递损失仅为20dB,而经过改进的三管有孔消声器的传递损失在600~2000Hz频段的传递损失可达到40dB,完全符合消声器设计的标准。关键词:消声器,噪声,传递损失II要旨我が国の人民生活水準の高まることに従って、自動車が我が国の保有量にになるのはますます大きくなって、交通騒音はますます深刻で、排気する雑音は自動車の雑音の主要な音の源の1つで、だから消音器の研究と設計はますます人々の重視を受けます。近代的なコンピュータを研究してシミュレーションの消音器の設計の上の応用をなぞらえ似せて、更に消音器のレベルを高めることができます。シミュレーションを通じて、設計して実験して互いに結合して、2者は互いに補充して、内部の構造から設計を行って、設計の時間を減らして、消音器の設計コストを下げます。消音器のが消音するのは大きさを量ります消音器の最も主要な指標を設計するので、冊は国家の標準《音響学の消音器の測量の方法GB/T4760—1995》を参照してライト型の自動車の式の主な消音器を抵抗するの設計とデータ処理を行ったことを設計して、パイプの音響学を通じて、法を実験して、消音器に対して消音する性能の実験を行って、4マイクロフォン法の測量の原理を採用して製作の2管無孔の消音器の模型と3管有孔の消音器の模型に対してそれぞれテストをして、そしてそれを得て順次伝えて曲線に曲をつけてから曲線に損害を受けますと。実験とデータ処理を通じて、消音器の設計を完成して、内部の構造の比較的簡単な2管無孔の消音器のが損失を順次伝えるのは20dBだけで、進歩の3管有孔の消音器のを通って損失を順次伝えて600~2000Hzウエーブ・バンドのが損失を順次伝えますに40dBまで達することができて、完全に消音器の設計の標準に合いますと結果をテストして表明しています。キーワード:消音器、雑音、損失を順次伝えますIII目录第1章绪论..........................................................................................................11.1研究排气消声器的意义...........................................................................11.2消声器研究现状........................................................................................1第2章消声器设计................................................................................................32.1消声器结构原理分析................................................................................32.2消声器设计总体方案................................................................................32.3消声器基本参数选择与设计计算............................................................4第3章传递损失的测量方法..............................................................................103.1声学测量方法..........................................................................................103.2传递损失的四传声器法测量原理..........................................................10第4章消声器模型的制作与传递损失的测量..................................................134.1两管无孔消声器模型的制作.................................................................134.2两管无孔消声器模型的传递损失测量..................................................134.3三管有孔消声器模型的制作..................................................................154.4三管有孔消声器模型的传递损失测量..................................................17第5章结论..........................................................................................................20参考文献................................................................................................................21致谢........................................................................................................................22附录Ⅰ..................................................................................................................23附录Ⅱ..................................................................................................................261第1章绪论1.1研究排气消声器的意义在城市环境中交通噪声是辐射最强、影响面最广的污染源。机动车辆噪声中,排气噪声是主要噪声源之一,它的降低主要是通过安装排气消声器。安装消声器后,必然对发动机产生很大影响,一般消声器的功率损失在3%到8%,消声量较大时允许有较大的功率损失;匹配小功率发动机的消声器更要求有较低的功率损失。我国的汽车拥有量越来越大,人们对汽车的要求不再仅仅是交通工具而已,更要求车的节能环保,美观和舒适。机动车辆的交通噪声是城市道路噪声的主要来源,针对汽车的噪声法规将会不断严格。排气噪声作为汽车主要的噪声源之一,这就要求消声器的消声性能要进一步提高。虽然消声器的设计方法已经发展得比较成熟,但随着人类科技的发展,新材料、新技术的成熟与应用,特别是计算机仿真技术的快速发展,使消声器设计又开始了新的篇章。应用现代仿真技术设计理论进行消声器设计必然会降低消声器设计成本,提高实验效率。本文将对发动机排气消声器进行设计研究,同时也是对计算机仿真算法知识的学习和应用。1.2消声器研究现状排气消声器涉及气体流动、传热、振动、声学以及发动机性能和结构等多个学科,具有一定的复杂性,因此早期的研究工作主要以试验为主。对汽车排气消声器的设计,大多是在一维平面波理论计算的指导下,根据样品及有关资料推荐的参数,加上设计者的经验进行设计,试验后满足要求即可。而在计算复杂消声器或分析频率较高时,由于高次模式波的出现,一维平面波的分析结果并不准确。对于复杂的消声器,一维平面波理论和经验设计都不能有效地支持实验工作,而且设计周期长。同上述设计方法相比,三维数值方法可以在计算机上更为准确地计算复杂的消声器,更快地分析多个设计和改进方案,找到最佳的方案,为实验提供更有效的参考。对于消声器的数值研究是在计算机软硬件不断发展的前提下进行的。这时出现两个主要的研究方向,其一是对消声器的各个参数进行多目标优化,以得到最好的消声性能;其二是将声学理论方程在二维或三维空间离散,以准确地计算和分析复杂形状消声器的消声性能。随着计算机计算能力的不断提高以及数值计算方法与理论的不断完善和成熟,有限元法、边界元法和有限差分2法在声学分析中都有所应用。消声器具有很多种类,其结构形式也各不相同。根据消声器的消声原理和结构不同,大致可将消声器分为阻性消声器、抗性消声器、阻抗复合式消声器和有源消声器等。阻性消声器是一种吸收型消声器,利用声波在多孔性吸声材料中传播时,因摩擦将声能转化为热能而消耗掉,从而达到消声的目的。这种消声器的有效频带较宽,对中高频噪声的消声效果较好。缺点是吸声材料的孔易被烟尘油污阻塞,在高温侵蚀性气体中使用寿命短,低频噪声效果较差,实际消声量的大小与噪声频率有关,存在上限失效频率等。阻性消声器按气流通道的几何形状不同,又分为直管式、片式、蜂窝式、折板式、盘式、弯头式消声器等。其中,片式消声器应用最为广泛;而弯头式消声器在国外已经得到广泛应用,以前国内对它重视不够,发展相对比较缓慢。阻性消声器性能的改进主要在于寻求具有防潮、防火、耐高温、耐腐蚀等特点的高性能吸声材料。同时,根据不同的工程需要选取不同形状的阻性消声器和吸声材料的护面结构。抗性消声器与阻性消声器不同,它不使用吸声材料,是借助管道截面的突然扩张和收缩,或旁接共振腔,使沿管道传播的噪声在突变处向声源反射回去,而不通过消声器,从而达到消声的目的。按其消声原理又可分为干涉型、共振型和扩张型等。这类消声器构造简单,耐高温和气体侵蚀,但频率选择性较强,适用于窄带噪声和中低频噪声的控制,高频噪声消声效果较差,与阻性消声器相比,阻力损失较大。在工程实际中,为了改善单个扩张室式消声器消声性能,通常将多个单节扩张室消声器串联起来。对于共振式消声器,除了串联不同频率的共振腔外,还可在共振腔中填充一些吸声材料以增加声阻,使有效消声的频率范围展宽。此外,气体流动对消声器性能也有一定的影响。对于不同结构形式的消声器,气体流动影响声学性能的效果不同,如:单端插入结构对抑制中低频气流再生噪声效果较好,而插入共振和典型空腔两个结构的中低频再生噪声较大。如何使抗性消声器自身的声学性能好而气流再生噪声较小,是需要进一步研究解决的课题之一。3第2章消声器设计2.1消声器结构原理分析抗性扩张式消声器是利用消声器截面的突然扩张(或收缩),造成消声器内声阻抗突变,以及腔壁使声波产生折射、反射干涉和散射,从而使沿管道传播的某些频率的声波不能通过消声器,因此产生消声效果。消声器的结构具有消声效果明显,结构简单,制造容易,耐用耐碰撞等特点。但消声的一维依赖性强,从而高频效果不好。特别是由于追求大消声量而增大扩张比,使
本文标题:轻型汽车抗式主消音器设计
链接地址:https://www.777doc.com/doc-307061 .html