您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业文档 > 研究生矩阵论课后习题答案(全)习题五
习题五1.证明:AA与AA均为幂等矩阵,即AAAA2)(,AAAA2)(证明:因为AAAA,故AAAAAAAAAAAA)()(2,AAAAAAAAAAAA)()(2.2.设nmCA,试证1)(TTAA证明:只需证明TTTTAAAA)(即可,实际上,由于AAAA,故TTTTTAAAAAAA)()(.3.设nmCA,则(1)nrankAIAAn(2)mrankAIAAm证明:(1)必要性.设nIAA,则nrankIAArankrankAn)(,故nrankA;充分性.设nrankA,由于)()()(AArankAAArankrankAAArank,故nAArank)(,则1)(AA存在,又由第1题,知AAAA2)(,在此式两端同时乘以1)(AA,有nIAA.(2)必要性.设mIAA,则mrankIAArankrankAm)(,故mrankA;充分性.设mrankA,由于)()()(AArankAAArankrankAAArank,故mAArank)(,则1)(AA存在,又由第1题,知AAAA2)(,在此式两端同时乘以1)(AA,有mIAA.4.证明:(1)rankAAArank)((2)rankAArankr)(证明:(1)因为)()()(AArankAAArankrankAAArank,故rankAAArank)(;(2)因为)()()(rrrrrArankArankAArankAAAArankArank,故rankAArankr)(.5.验证(1))(**AAAAm(2)**)(AAAAl证明:(1)设)(**AAAG,则证明mAG,即GAGAAAGA*)(,.AAAAAAAAGA*******])[(])([)(GAAAAAAAA)(])[(*****;*))((AAGAAAGA*****])(][)([AAAAAAAAAAAA])(][)([******AAAAAAAAAAAA])][()([******IAAAAAAAAAAAA]))[((****IAAAAAAAAO(2)设**)(AAAG,则证明lAG,即AGAGAAGA*)(,.*******])[(])([)(AAAAAAAAAGAGAAAAAAAA*****)(])[(;)()(*AAGAAAGAOAAAAIAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAA]][)([])(][)([])(][)([])([])([*********************6.求下列矩阵的g逆A:(1)2012010102011A(2)1101110110122A并分别求方程11bXA和22bXA的通解,其中TTbb)1,1,2(,)1,1,0,1(21.解:(1)对矩阵1A作初等行变换0000000102012012010102011A,则CDA010201010110011,故11111()()TTTTRLADCDDDCCC220200101101151,该方程组的通解为11311123131402142111()00000555220122cccXAbIAAYcccc,其中31,cc为任意常数.(2))对矩阵2A作初等行变换0000121011011101110110122A,则CDA121011010101122故111122002111()()2226011TTTTRLADCDDDCCC,该方程组的通解为12411232212234313442211011211210111()001113331211012ccccccccXAbIAAYcccccccc其中4321,,,cccc为任意常数.7.求下列矩阵的极小范数g逆mA(1),4122011A(2)1110323012A并分别求方程11bXA和22bXA的最小范数解,其中,)1,1(1TbTb)1,0,3(2解:(1)因为1102214A为行满秩矩阵,故11111101()()105520TTmAAAA,方程组11bXA的最小范数解为1111()1552mXAb.(2)对矩阵2A作初等行变换2103103230012111000A,故2101032301211ACD则1111281991()()()10348154441111TTTTmRLADCDDDCCC.方程组22AXb的最小范数解为22()mXAb3121413.8.设矩阵}3,1{AG,则nCX是不相容线性方程组bAX的最小二乘解的充要条件是对任意nCb,X是方程组AGbAX的解证明:设GbX0,则GbX为bAX的最小二乘解.充分性.若AGbAX,则bAXbAGbbAX0,故X为bAX的最小二乘解.必要性.若X为bAX的最小二乘解,即bAXbAX0,则2bAX200bAXAXAX)()()()(0*00*02020AXAXbAXbAXAXAXbAXAXAX又bAXbAX0,且)()(0*0bAXAXAX)()()()(*****bAGbAGbXbAGBAGbAXbAAGAGbX]))[((*****0,0)]()[()()(*0*00*0bAXAXAXAXAXbAX,则020AXAX,即AGbAXAX0.9.求下列矩阵的最小二乘g逆lA:(1)111112211A,(2)24242202121211012A并分别求不相容方程11bXA和22bXA的最小二乘解,其中,)0,0,1(1TbTb)1,0,1,0(2.解:(1)因为111112211A为列满秩矩阵,故147174111)()(11111TTlAAAA,方程11bXA的最小二乘解为74111)(11bAXl.(2)对矩阵2A作初等行变换000000001010110124242202121211012A,则CDA10101101240212012故410252010610352010251)()()(112TTTTlCCCDDDA,方程22bXA的最小二乘解为6393251)(22bAXl.10.用满秩分解法求下列矩阵的极小最小二乘g逆A:(1)1110112001001A(2)1011012202112A并分别求不相容方程11bXA和22bXA的极小最小二乘解,其中,)2,1,2,1(1TbTb)0,0,1,0(2解:(1)对矩阵1A作初等行变换1001110002001110000111000A,则101021101000111ACD故1111112651()()()1265224822TTTTRLADCDDDCCC,方程11bXA的极小最小二乘解为1111()122XAb.(2)对矩阵2A作初等行变换2112101022011101000101000A,则211021011001110ACD故1111261011111()()()01477426444TTTTRLADCDDDCCC,方程22bXA的极小最小二乘解2251()7212XAb.11.证明:线性方程组A有解的充要条件是AA和),(ArankrankA.证明:充分性.因为),(ArankrankA,故线性方程组A有解,且A为其解.必要性.设线性方程组A有解,设为0,即0A,显然),(ArankrankA,且00AAAAAA.12.设qmqpnmCCCBCA,,,那么方程CAXB相容的充要条件是,对某个BA,,有CBCBAA成立,且方程的通解为)(AZBBAZCBAX(pmCZ)证明:必要性.若方程CAXB相容,设0X为其解,即CBAX0,则CBAXBBBAXAABCBAA00.充分性.若对某个BA,,有CBCBAA成立,则CBA是方程CAXB的解,且对任意pmCZ,)(AZBBAZCBAX都是方程的解,因为BAZBBAAAZBCBAZBBAZABCBAA)(CAZBAZBC又设Y为任一解,即CAYB,则Y可写为AYBBAYCBABAYBAYCBAY)(满足)(AZBBAZCBA的形式.13.设,,rrankARAnmVU,是正交阵,若TVUA000,其中是r阶下三角矩阵,证明:TUVA0001.证明:只需证明矩阵TUVG0001满足Moore-Penrose广义逆的四个条件即可.因为IUUUUIVVVVTTTT,,故(1)AVUVUUVVUAGATTTT0000000000001,(2)GUVUVVUUVGAGTTTT000000000000111,(3)TTrTTTTVIVVUUVGA000000000)(1TrVIV000GAVUUVTT0000001,(4)TTTrTTTTUIUUVVUAG000000000)(1TrUIU000AGUVVUTT0000001.故TUVA0001.
本文标题:研究生矩阵论课后习题答案(全)习题五
链接地址:https://www.777doc.com/doc-3092333 .html